The Determinants of Technology Adoption: A Case of the Rice Sector in Tanzania
Yuko Nakano and Kei Kajisa
International Rice Research Institute

Back Ground and the Purpose of the Study
- The importance of rice is now increasing rapidly in Sub-Saharan Africa (SSA) (Balasubramanian et al., 2007), and improving its productivity is regarded as a key to boosting domestic rice production and to ensuring food security.
- The Asian Green Revolution can be characterized as an increase in paddy yield through the diffusion of high-yielding modern varieties (MVs) together with an increase in chemical fertilizer application (Evenson and Gollin, 2003). The adoption of better crop and water management practices such as bund construction, leveling of plots, and transplanting in rows also enhance paddy yield.
- In order to draw lessons on how to realize a rice Green Revolution in SSA, this paper investigates the determinants of the adoption of rice production technologies in Tanzania by using nationally representative data.

Data
- Six districts were selected from three major rice producing regions (Morogoro, Mbuya, Shinyanga).
- In total, 76 villages were selected by stratified random sampling based on the number of irrigated and rain-fed village in each district.
- Ten households were randomly sampled in each village, generating the total sample of 760 households.
- After dropping outliers and those who did not grow rice, our effective sample size becomes 657.

Results and Discussions

Table 1: The impact of credit use on the adoption of technologies

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adoption of MVs</td>
<td>0.021</td>
<td>0.021</td>
<td>0.253</td>
<td>0.253</td>
<td>0.253</td>
</tr>
<tr>
<td>Chemical Fertilizer use (kg/ha)</td>
<td>2.756</td>
<td>2.756</td>
<td>90.374***</td>
<td>90.374**</td>
<td>87.679**</td>
</tr>
<tr>
<td>Bund Construction</td>
<td>-0.007</td>
<td>-0.007</td>
<td>0.140</td>
<td>0.140</td>
<td>0.140</td>
</tr>
<tr>
<td>Plot Leveling</td>
<td>-0.003</td>
<td>-0.003</td>
<td>0.588**</td>
<td>0.588*</td>
<td>0.588**</td>
</tr>
<tr>
<td>Transplanting in rows</td>
<td>0.007</td>
<td>0.007</td>
<td>0.840***</td>
<td>0.840*</td>
<td>0.771*</td>
</tr>
</tbody>
</table>

| Standard errors in brackets | *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. |

Methodology
- We hypothesize that credit enhances fertilizer use and the adoption of labor-intensive agronomic practices, including bund construction, plot leveling, and transplanting in rows.
- Credit has positive impact on chemical fertilizer use, the adoption of bund construction, plot leveling, and transplanting in rows.
- Credit has limited impact on the adoption of MVs, which requires little cash on hand.
- Credit has limited impact on the adoption of MVs, which requires little cash on hand.
- The credit status may be determined endogenously, we estimate instrumental variable (IV) models. In order to avoid including two endogenous variables in one model, we estimate the models which include dummies of being credit user and involuntary credit non-users.
- Since the credit status may be determined endogenously, we estimate instrumental variable (IV) models. In order to avoid including two endogenous variables in one model, we estimate the models which include dummies of being credit user and involuntary credit non-users.
- We use the existence of Saving and Credit Cooperative Society in the village, and that of other credit organizations in the village, the value of household asset, the size of owned plot in the upland area as IVs.
- Since our data is clustered at village level, we estimate models with cluster-robust standard errors and cluster specific random effect models.

References

Acknowledgements
The authors would like to thank Bill and Melinda Gates foundation and Japan International Cooperation Agency for their financial support. For further information, please contact y.nakano@irri.org.