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Abstract 

An empirical bid-rent model is applied with a multinomial logit (MNL) for analyses of rice production in 

Japan, which is characterized by cultivation by producers working with various farm sizes. By combining plot 

and farm databases, the distances to respective field plots from potential holders in different farm size classes are 

examined using the model. The impact of land resource scarcity on farm size is explained by interpreting the 

distance effect. Results clarify that field plots at a greater distance from a farm command less rent. Especially in 

steeper areas with scarce land resources, large farms have no advantage in bid-rent competition with smaller 

farms. 
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1. Introduction 

 

Asian rice production has typical features related to its land use: small farm size and scattered field plots. 

The average rice farm size is less than 0.5 ha in China, Indonesian Java, and the Red River Delta in Vietnam. It is 

less than 1 ha in Bangladesh, eastern India, and the Mekong River Delta in Vietnam. It is about 1 ha in Japan and 

1–2 ha in most other Asian countries. Only in Thailand, Myanmar, Cambodia, and Punjab, India is the average 

farm size larger than 2 ha (Hossain and Narciso, 2004). Increased wages, land, and other input prices under 

circumstances of globalization, along with pressure from World Trade Organization (WTO) negotiations and the 

Free Trade Agreement (FTA) have raised the issue of competitiveness and inefficient farm size compared to rice 

exporters such as United States, where the average farm size is about 180 ha. Rice production in Japan faces 

gradual price decreases even given its prohibitively high tariff rate. It is of great concern whether Asian rice 

farms can overcome farm size and land resource limitations, and eventually survive with global competition. 

The relation between farm size and the return on land area has puzzled economists for some time (Assuncao 

and Braido, 2007). The issue is particularly important for agriculture, which requires wide areas of land. 

Therefore, farm size leads to physical and management limitations. An often used approach to analysis is to 

investigate the input–output relation considering land resource characteristics. Kawasaki (2010) clarified the 

impact of scattered farm plots in Japan on rice production costs. Since many reports of the econometric literature 

emphasize observation of a firm as a minimum unit based on the hypothesis of profit maximization behavior, the 

literature has been unable to address the effect of distance to a farm varying on a plot level rather than on a farm 

level. Tittonel et al. (2007) investigated the relation between a variable input and crop yield by plot level 

observation, although the farm size effect has not been elucidated adequately. Practical obstacles include not 

only the difficulty of observing plot-specific input use such as those of seed, fertilizer, and labor, but also the 

impossibility of dividing overhead costs among the field plots used by a farm. 

Another line of research has used empirical land use models explaining observed land use patterns. 
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Multinomial logit (MNL) models have been widely applied to investigate the determinants of observed land use 

as a reflection of bid rent by the land holders. In the context of forest development or conservation, many studies 

of the literature have applied either an MNL or binomial logit model (Chosmitz and Grey, 1996, Lewis and 

Plantinga, 2007, Wyman and Stein, 2010, Mann et al., 2010). The model also has been implemented in a study of 

land use change resulting from urbanization (Zhou and Kockelman, 2010). Lewis and Plantinga (2007) applied 

the MNL incorporating net return on land by uses of different types. Rashford et al. (2011) also used the MNL 

model with variables of net return on land and examined land use conversion from grassland to cropland. 

Moreno and Sunding (2005) applied a nested logit model to the simultaneous decision making of technology and 

crops. Along with the recent use of geographical information systems (GIS), others have used satellite and 

remote sensing land use information as datasets (Nelson and Hellerstein 1997, Muller and Zeller 2002). Spatial 

autocorrelation has been considered in logit models described in recent reports of the spatial econometric 

literature (Anselin 2010, Zhou and Kockelman, 2010, Fox et al., 1994). 

Nevertheless, no empirical bid-rent model has been used to examine the farm size problem given equivalent 

land use. Such research would be valuable if plot level observations can convey the prospect of farm size in the 

future. Analyses require a combination of plot and farm data to express the plot attributes: not only distance to 

the cultivating farmer but also to potential farmers who can bid on the land. We apply an empirical bid-rent 

model with MNL to rice production in Japan, with cultivation by producers operating at various farm sizes. By 

combining the plot and farm level databases, the distance to field plots from potential farmers are considered in 

the model. The impact of land resource scarcity on farm size is examined by interpreting the distance effect. 
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2. Relation of Bid rent and farm size 

 

Bid-rent theory is based on the different rent provision capabilities of land occupants. Net return on land πs, 

viz. payable rent, is πs=   ACpq /  where p and q respectively denote the unit price and quantity of output, C 

is the total cost except for land rent, and A is the land area. Figure 1 shows the net return on land for rice 

cropping in Japan (MAFF, 2004, 2009). Because of the price condition, the value of net return on land for rice 

cultivation has decreased recently in every farm size class. In 2009, the figure became positive for farm size 

classes of 3 ha and larger. The return is almost equivalent for classes for 5–15 ha planted area of rice. 

Figure 2 presents a conceptual image of the bid-rent theory for farms requiring farmland resources for two 

farms (Farm t and Farm u) with different size. Depending on the larger farm size, farm t can pay more for land 

than farm u can. The bid rent for a plot, however, decreases as the distance from the main home or building 

increases. Farm t cannot bid a higher rent for plot 2, although it can bid much higher for plot 1 than farm u can. 

Farmland resources in the area are scarcer according to their distance from the cultivator. Simple geometric 

calculations can illustrate how far a farmer should travel in a scarce land condition. Let dmax represent the 

maximum distance for the farm with a certain farm size. Thus we have the following expression 

 

dmax=  
 

    
          (1) 

 

where pi represents the circular constant, f signifies the ratio of available farm for the farm on total land area, and 

where A stands for farm size. Figure 3 portrays the calculated result of dmax by different farm sizes and scarcities 

of farmland resources. Reflecting the mountainous and highly populated condition of the country, the average f is 

2.6% in Japan. If a farm expands its size to 20 ha in a typical situation, for example, a farmer would most likely 

have to travel at most 1.5 km to a field plot. 
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Bid-rent 

 

Fig. 2. Farm size and bid rent for land-based farmers. 

Fig. 1. Net return on land for rice 

Note: Source MAFF 2004 and 2009. 

 

 

Fig. 3. Maximum distance from the farm to a plot (dmax) by different 

farm size and land resource characteristics. 

Note: Based on calculation where f is the ratio of farmland on total land area. 

f=0.026, 0.005, and 0.187 are, respectively, national average, average of flat 

regions and average of mountainous region in Japan. 

 

 

3. Empirical model 

 

3.1 Bid-rent model with multinomial logit (MNL) estimation 

 

Multinomial logit (MNL) models have been applied for empirical bid-rent estimation. Presuming that x is a 

variable matrix with vectors of variables xk (k=1…K), consisting of plot i (i =1…n) characteristics, land market 

situation for the plot, and distance from the farm with different farm size, then the net return on land s for 

different farm size class s (s=1…S) can be expressed as 

 

Farm u 

Farm t 

plot2 plot1 

Farm size 

u<t  
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πs = x bs + es ,     (2) 

 

where bs is a vector of coefficients with factor bks , and es is an error term. 

The probability of occupancy of plot i by a class t farm (t=1..S, t≠s) is 

 

P(t) = P(πt ≥ πs) = P(x bt–x bs ≥ et–es).   (3) 

 

The MNL for the estimation is written as shown below 

  

P(t)= 
         

          
 
   

 ,    (4) 

   

where βt and βs are the parameters for estimation. 

 

3.2. Equiprobability distance lines 

 

We next regard the relation among distance, size, and the land resource scarcity. The MNL result derives the 

occupancy probability for each size class associated with the distance from each class farm. 

When probability for class t equals that of class u (t≠u), P(t) = P(u) that is x*   
  =x*     for given x*. 

Assigning regional characteristics to x*, but with distance variables, produces equiprobability lines in the 

dimension of variant distance from each class farm. These equiprobability distance lines are equivalent to isorent 

lines by different distance and farm size. 

Finally, subsistence of the large scale farm is examined using the combination of maximum distance dmax 

and equiprobability lines. If a farm in a particular class should travel to the extent of less probable distance, that 

is, to a less affordable field plot, then compared to the smaller class farm, it struggles at gathering farmland and 
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is unlikely to exist as a large-scale farm operation. 

 

4. Data and hypothesis 

 

Our study area is the Tokamachi city in Niigata prefecture in Japan, where the most famous rice brand, 

Uonuma Koshihikari, is produced under a severe climate with a huge amount of snowfall. Although the average 

farm size is 1.25 ha, the number of large scale rice farms larger than 10 ha, or than 30 ha, has increased during 

the last decade. 

With the assistance of the local city authority and agricultural cooperative, planting plans for 2010 and farm 

identification numbers (Farm ID) for every rice field plot were collected as a plot database. Location features 

obtained through the Agricultural Census of 2005are added as plot attributes, such as the degree of the steepness 

in the neighborhood area, distance from a Densely Inhabited District (DID), and so on. The farm database 

consists of a Farm ID and farm characteristics such as farm size and government scheme enrollment. 

The integrated database of both plot and farm database is generated with Geographic Information System 

(GIS). It enables calculate the distance to field plots from different size class farms. 

Among total 33,170 plots in the integrated database, 12,381 plots were excluded because of the lack of 

statistical information or their current land use if different from rice cropping. We therefore apply 20,789 field 

plot data to the MNL estimation. 

  



 9 

 

  

Fig. 4. Integrated database used for estimation. 

 

Table 1 presents denominations, descriptions, data sources, and expected signs of variables used for 

estimation. Dependent variable P(s: s=1..4) represents the probability of plot i occupancy by corresponding farm 

size class s. Farms are classified into four size classes (Cl) considering of net return on land and actual shares in 

the region: farms operating with less than 3 ha (Cl1), 3–5 ha (Cl2), 5–15 ha (Cl3), and 15 ha and larger (Cl4). 

A set of independent variables consists of six attributes of the plot, farm, and areal characteristics and three 

distance-to-farm variables. Coefficients estimated by MNL denote relative probabilities compared with a norm 

category. We set Cl1, the smallest class, as the norm. Positive signs are therefore expected when the attribute has 

a positive relation with farm size and vice versa. The plot size variable is based on the plot database and is 

expected to be positive. The larger a farm becomes, the larger machinery it can afford to hold, which is efficient 

for operating in large plot fields. 

Both elderly farm labor and distance to DID are proxies of the land market situation around the plot. 

Because of aging of farmers, more productive field plots are released to the market, which is expected to be a 

positive sign. In contrast, adjacency to DID compels land owners to anticipate capital gains of development. 

Therefore, a negative sign is expected. 

We use two dummy variables, steepest area and steep area, to denote the classes of steepness of the area 

surrounding the plot
1
. If both dummies are zero, then the plot belongs to a flat area. It can be assumed that 

                                                  
1 A steepest area is that of 1/20 and steeper. A steep area is steeper than 1/100 and but less steep than 1/20. 

 

Farm database 

Farm ID  
Farm 
size 

Scheme 
enrolment 

1   
2   
3   

   

 Integrated database 

Plot ID Plot attribute Farm 
attribute 

Farm to plot location 

plot 
size 

slope … Farm 
size 

… Distance from 
class 2 farms 

… 

1        

2        

3        

        

 

 

 

Plot database 

Plot ID Plot attribute Farm ID 
size slope … 

1    1 
2    1 
3    1 
4    : 

 

 

 

GIS 
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expected signs of steepness condition are negative. Scarcer farmland resources in steeper areas cause difficulties 

for large farms to subsist, as described in the earlier section, although direct payment in less favored areas might 

ease the condition
2
. 

Governments promote enlarging farm size and the increase of professional farming through farmer 

certification programs. Enrollment for this scheme is therefore regarded as having a positive relation with farm 

size. 

The ds (s=2..4) 
3
are distances from any farm in the class s to plot i. The expected sign is negative for the 

probability equation of corresponding class, i.e. ds for P(s) because the more distant the plot is from the farm, the 

lower the rent that can be paid, as the theory would dictate. 

 

Table 1 

Variables and expected sign 

Variables Description (source) Expected sign 

Dependent variables s=1: 0–3 ha, 2:3–5 ha, 3:5–15 ha and 4:15 ha and more (integrated 

database)  

 

P(s: s=1..4) Farm size class 

Independent variables   

 Plot size 

Elderly farm labor 

DID 

Steepest area 

Steep area 

Field plot size (a) (Plot database) 

Share of aged farm labor in the community (MAFF2005) 

Travel time (min) from DID (ditto) 

1: in the steepest area, 0: no (ditto) 

1: in the steep area, 0: no (ditto) 

+ 

+ 

- 

- 

- 

 Scheme enrollment 1: enrolled, 0: not enrolled (Farm database ) + 

 d4 

d3 

d2 

Distance (km) from class s farm to the plot (Integrated database)  - for the categorized class, 

+/- otherwise 

 

 

 

Descriptive statistics of the variables are presented in Table 2. The plot size is smallest in Cl1 and largest in 

Cl4. Regarding the 30 a standard consolidation rice field plot, average plot size of less than 10 a in the steepest 

area is considerably small. Situations of aged farm labor are almost identical among classes. Furthermore, Cl4 

farms are located close to DID and flat areas, whereas Cl2 farms are observed in steeper areas. Fewer Cl1 

farmers enrolled as certified farmers. However, all Cl4 farmers are certified by the scheme. Regarding 

distance-to-farm variables, d4 is larger than d2 and d3 in three classes, except for Cl4. 

                                                  
2 Most farmers in steeper areas receive a direct payment according to the criteria coinciding with our classification of steep 

conditions. The payment rates are 21,000 yen/10 a for rice field in steepest area and 8,000 yen/10 a for steeper areas. 
3 d1 (s=1) is excluded because it is the smallest class and it exists everywhere in the region. 
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Table 2 

Descriptive statistics of variables used in the logit model  

variables Class 1 (0-3ha) Class2 (3-5ha) Class 3 (5-15ha) Class 4 (15ha-) 

mean s.d. min max mean s.d. min max mean s.d. min max mean s.d. min max 

Plot size 9.88  8.88  0.10  113.8  12.48  10.88  0.20  128.5  10.57  9.60  0.10  96.1  14.46  11.39  0.30  94.0  

Aged farm 

labor 0.42  0.15  0.06  0.82  0.40  0.14  0.06  0.82  0.38  0.12  0.06  0.82  0.43  0.17  0.06  0.82  

DID 10.70  6.15  7.50  22.5  11.36  6.56  7.50  22.50  10.30  5.85  7.50  22.50  7.94  2.52  7.50  22.50  

Steepest 

area 0.24  0.42  0.00  1.00  0.35  0.48  0.00  1.00  0.13  0.34  0.00  1.00  0.02  0.15  0.00  1.00  

Steep area 0.28  0.45  0.00  1.00  0.24  0.43  0.00  1.00  0.41  0.49  0.00  1.00  0.09  0.28  0.00  1.00  

Scheme 

enrollment 0.03  0.17  0.00  1.00  0.41  0.49  0.00  1.00  0.49  0.50  0.00  1.00  1.00  0.00  1.00  1.00  

d4 3.17  1.88  0.00  7.14  3.59  1.97  0.00  7.14  3.38  1.73  0.00  7.14  1.23  1.25  0.00  6.36  

d3 1.17  1.05  0.00  4.62  1.15  1.06  0.00  3.77  0.30  0.57  0.00  3.13  1.45  1.03  0.00  3.86  

d2 0.65  0.72  0.00  2.57  0.15  0.39  0.00  2.11  0.50  0.69  0.00  2.21  0.86  0.76  0.00  2.35  

 

 

5. Results of MNL estimation 

 

 Table 3 presents the results of MNL estimation
4
. Expected signs are met in most of the variables. Cl2 and 

Cl4 farms hold larger plots, although Cl3 does not. The coefficient of the plot size is largest for Cl2 rather than 

Cl4, which has a larger mean value of plot size. This result demonstrates that the largest class is not necessarily 

advantageous for holding large size plots with high operational efficiency. 

As elderly farmers become increasingly numerous, the average farm size is likely to expand. In contrast, 

adjacency to a city center negatively impacts farm size. Both the steepness condition variables are negative for 

Cl4 farms indicating that largest class farms are located in flat areas. Enrollment in farmer certification programs 

has a positive impact for Cl2 and Cl3 farmers. 

Distance-to-farm variable ds also shows expected signs: it is negative for probabilities of the own category. 

The distance from farm to plot therefore has a negative impact on farmland occupancy by the farm. 

 

 

 

                                                  
4 We also estimated the spatial autocorrelation model as e=We+u;  was not significant. 
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Table 3 

Estimated result of MNL 

 Class 2 Class3 Class 4 

 β p. β p. β p. 

constant -2.462 .000 -2.658 .000 1.671 .000 

Plot size .021 .000 -.010 .003 .009 .078 

Aged farm labor -.739 .001 1.317 .000 1.991 .000 

DID -.003 .592 -.035 .000 -.078 .000 

Steepest area .678 .000 -.393 .000 -.469 .085 

Steep area .512 .000 .897 .000 -.159 .382 

Scheme enrollment 3.037 .000 3.594 .000 ―  

d4 -.055 .011 .120 .000 -.711 .000 

d3 .221 .000 -1.440 .000 .276 .000 

d2 -1.578 .000 .095 .071 .306 .002 

Note: McFadden r2=0.40. χ2=1.29 × 10-4 (level of significance: 0.00). 

 

6. Competition among farms with different size 

 

Equiprobability distance lines can be calculated through the MNL estimated result. By substituting the 

average value to x*, except for distance and steepness conditions, line P(t)=P(u) is derived. Steepness conditions 

are presumed to be 1 or 0 to clarify the impact of different conditions. Each of the three distance variables is set 

as 10 (km) to examine the relation between the remaining two. 

Equiprobability lines for P(Cl2)=P(Cl3) and P(Cl2)=P(Cl4) for different steepness conditions are depicted 

in Figures 5 and 6. Each represents the equiprobability distance from the farm and either size class of farm more 

probably holds the plot in either side of the line. In flat areas, large-scale farms are widely subsistent compared 

to those in the steepest areas. For example, a Cl4 farm has an advantage over Cl2 in an area when the plot is less 

than about 3 km distant from Cl4, even though it is as close as 0 km from Cl2. In the steepest area, Cl4 farms are 

not dominant unless the plot is a few hundred meters away from Cl2 farms. 
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Fig. 5. Equiprobability lines in flat areas. 

 

Fig. 6. Equiprobability lines in steepest areas. 

 

 

Points representing dmax in Figures 5 and 6 are maximum distances from farms to field plots based on the 

calculation explained in Table 4. In flat areas, about one-fourth of land is devoted to rice fields. The calculated 

dmax are, respectively, 0.23 and 0.51 for Cl2 and Cl4. As shown by dmax in Figure 5, Cl4 farms therefore can be 

quite subsistent even in competition over the most distant land. In contrast, in steepest areas, the ratio of rice 

fields to total land area is only 5%, which respectively engenders dmax of 0.49 and 1.09 for Cl2 and Cl4. Bid-rent 

competition over the most distant land between Cl2 and Cl4 probably results in occupancy by Cl2. 

 

Table 4 

Calculation of maximum distance of a farm using the steepness condition 

 Flat 
area 

Steepest 
area 

f: ratio of rice field to total land area 0.24 0.05 

dmax(km)   Cl2 (A=4 ha) 

          Cl4 (A=20 ha) 

0.23 

0.51 

0.49 

1.09 

Note: dmax=  
 

    
 

 

7．Conclusion 

 

The inverse relation of farm size and productivity, and bid rent, has long been discussed and examined. The 

phenomenon is particularly pronounced with agriculture, where vast areas of land are necessary for efficient 

production and where farm size expansion is expected to reach the physical and management limitations of a 

farm. The problem is particularly important with regard to Asian rice production, which must confront global 

competition with small scattered plots in steep conditions. However, no report in the relevant literature has 
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described a study clarifying the relation of land resource scarcity, distance to a farm, and farm size. By applying 

a bid-rent model incorporating distance-to-farm plot attributes with a combined farm and plot database, these 

situations are explained empirically in this paper. 

Our MNL estimation result supports the bid-rent theory considering resource scarcity and farm size. The 

more distant a plot is from a farm, the less rent it can earn. In steeper areas, large farms have no sufficient 

advantage in bid-rent competition with smaller farms. Direct payment in steep areas is apparently insufficient to 

compensate for the disadvantage to larger scale farms. Moreover, efficient plots are not easily held by large 

farms. 

The model does not employ rent variables directly. Consequently, it is difficult to simulate a case of 

economical situation change. If the local average net return on land by size class were incorporated, then the 

estimated probability might be comparable with the rent level at certain points. Another limitation of this study is 

its restricted use of a special autocorrelation model. Examining countless specifications of special econometric 

models is far beyond the scope of this paper, but we were able to clarify interesting special relations through the 

use of a GIS device and distance-to-farm information, which had not been fully applied in any earlier study. 
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