Re-evaluating the role of biomass and dead organic matter in the optimal forest harvest decision with carbon sequestration

Craig Johnston and G. Cornelis van Kooten
University of Victoria
Department of Economics
Contact author: C. Johnston craig@uvic.ca

Poster prepared for presentation a the Agricultural & Applied Economics Association’s

Copyright 2012 by Johnston and van Kooten. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
INTRODUCTION

- July 8, 2009: G8 leaders set target to reduce global GHG emissions by 50% from 1990 levels by 2050; rich countries to reduce aggregate emissions by 80%. EU target – reduce emissions 20% by 2020; UK Climate Change Act (2008) – cut them by 34% by 2022, 80% by 2050.

- Carbon offsets have become important, especially forest ecosystem offsets. BUT questions linger regarding forest activities, esp. those to Reduce Emissions from Deforestation and forest Degradation (REDD) and the expansion of REDD to include activities aimed at sustainable forest management and biological conservation (REDD+), thus combining UNFCCC with the UN Convention on Biological Conservation [1].

- When a dead organic matter (soil) carbon pool plays a large role in a forest ecosystem, optimal forest rotation age criteria may change [2].

METHODS: DETERMINING HARVEST AGES

- Building on [2] and [4], we develop a single-stand forest harvest model that takes into account CO₂ emissions from harvesting and carbon stored in products, as well as that stored in the forest ecosystem (including dead organic matter). At a given year, landowner chooses to clearstand or defer decision to the following year. Original equations in discrete form:

\[P_{t+1}^{\text{timber & carbon}} = \left(\frac{\text{Plugs} \cdot \text{\#harvests}}{\text{---}} \right) \times \text{\#regeneration} + \mu (1 + r) \left(\frac{P_{t}^{\text{CO₂}} (1 + r)^{\Delta t} - C_{t}}{\text{---}} \right) \]

where \(v_t \) timber volume at \(t \), \(\beta \) converts volume into above ground biomass measured in CO₂, \(r \) discount rate, \(\alpha \) pickle factor

- Let \(k=0 \) no harvest, \(k=1 \) harvest), \(f \) rate of litter fall, \(\delta \) is the decay rate of dead organic matter (D), \(\mu \) is proportion of biomass left on site after harvest. Then

\[\Delta C_{t+1} = \beta (v_t - \mu v_t) - \delta D_t \]

where addition of (2) modifies fixed rotation age derived in (1) so that the rotation age might vary from one harvest to next.

GOALS/OBJECTIVES

1. Examine issues related to the use of forest ecosystem carbon sinks.
2. Consider the effect on optimal forest harvest times as initial levels of carbon in the dead organic matter (DOM) pool and carbon prices change. Identify the impact of a carbon tax and initial DOM level on the projected trajectory of carbon in the DOM pool and overall.

THEORY

- A CO₂ tax \(P_{t}^{\text{CO₂}} \) in eq.1 affects the optimal harvest age as does the initial amount of carbon stored in the DOM pool (eq.2)

- Accompanying figures indicate what happens.

Further Areas of Research

- Need to model explicitly tradeoffs between conservation (e.g., DOM) and climate mitigation costs through logging/forest product efforts. In essence, what are the tradeoffs between REDD+ and CO₂, and costs.

ACKNOWLEDGEMENTS: Funding of this project was supported by SSHRC Grant #410-2011-0338 and the Canada Research Chairs Program.