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Substitution, Damages, and Compensation for Anglers due to Oil Spills: 

The case of the Deepwater Horizon 
 

Abstract 

Oil spills and other anthropogenic environmental disasters have economic consequences 

that transcend losses of business revenue and property damages. Such non-market losses 

include those accrued by recreational users, as well as by individuals who hold passive 

use value for the affected environmental resources. We use a series of random utility 

models to examine the substitution patterns and welfare losses experienced by 

recreational saltwater anglers in the Southeast U.S. due to the Deepwater Horizon oil 

spill. The use of a difference ratio to measure changes between pre- and post-spill 

preferences that allow us to discern substitution patterns in fishing season, catch, and site 

popularity. We also estimate monetary welfare measures for damages incurred by 

anglers, as well as the in-kind compensatory restoration that would be required to make 

anglers whole. 

 

Keywords: recreational fishing, MRIP, Deepwater Horizon, oil spill, random utility 

model, compensatory restoration, welfare measure 
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Introduction 

Oil spills and other anthropogenic environmental disasters have economic consequences 

that transcend business losses and property damages. Such non-market losses include 

those accrued by recreational users, as well as by individuals who hold passive use value 

for the resource in question. Measurement of the non-market economic consequences of 

man-made disasters is often complicated by the ex-post nature of such analysis, as most 

researchers do not have the necessary foresight to collect data before, during, and after 

the event (Grigalunas, et al. 1986). Researchers are thus forced to rely on counterfactuals 

and hypothetical scenarios to re-create what behavior and preferences would have been 

like in an alternate state of the world where the event does not occur. However, persistent 

data collection efforts such as that of the Marine Recreational Information Program 

(MRIP) provide opportunities for study of the non-market impacts of oil spills and other 

disasters in an ex-ante/ex-post fashion. 

The Deepwater Horizon (DWH) oil spill presents an opportunity to use MRIP to 

analyze the effects of a man-made environmental disaster before, during, and after the 

event. On April 20, 2010, the largest oil spill in the history of the United States began off 

the coast of Louisiana in the Gulf of Mexico. By the time the leaks in the DWH offshore 

drilling rig were fully contained on July 15, surface oil had reached several areas in the 

Florida Gulf Coast. A large expanse of the Gulf of Mexico Exclusive Economic Zone 

(EEZ) had been closed to fishing, reaching 37 percent of the EEZ at the height of the spill 

(Figure 1). State waters throughout the Gulf were heavily impacted, resulting in closures 

ranging from 95 percent of state waters in Mississippi, 55 percent in Louisiana, 40 

percent in Alabama, and two percent in Florida (Upton 2011). Federal and State 
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authorities responded to the oil spill by deploying large-scale cleanup and mitigation 

efforts throughout the affected areas. In Florida, a massive campaign to ensure potential 

beach-goers and recreational anglers that coastal areas of the state were still “open for 

business” was also launched, and included “free-fishing days” during which the fishing 

license requirement was temporarily lifted. 

Aside from the effects on marine ecosystems and the commercial fisheries that 

depend on them, the DWH spill can also be expected to have impacted recreational use of 

coastal and marine resources in many areas of the Gulf. Under the Oil Pollution Act, 

Federal, State, and Tribal authorities have standing to claim and recover losses on behalf 

of the public from responsible parties. Recoverable damages include both the costs of 

primary restoration and losses in value from the time of the incident until recovery, where 

losses include direct use and passive use values (Jones 1997). Recreational use of natural 

resources falls under the direct use value category, implying that beach-goers and anglers 

may be entitled to compensation for interim losses in value in the form of compensatory 

restoration (Mazzotta, Opaluch and Grigalunas 1994; Jones and Pease 1997; Flores and 

Thacher 2002; Parsons and Kang 2010). More importantly, recreational demand may 

offer a litmus test of whether primary restoration under Natural Resource Damage 

Assessment (NRDA) plans have been effective by determining whether affected locations 

are as desirable after restoration as they were before the oil spill. 

A random utility model (RUM) of site choice is well suited to analyze situations 

where recreational users have alternative locations to visit (Bockstael, McConnell and 

Strand 1991). A RUM models human behavior based on observed choices that are 

assumed to be driven by the characteristics of each alternative. The RUM was introduced 
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by McFadden (1974, 1977), who developed the conditional and nested logits. Bockstael, 

Hanemann and Kling (1987) used the nested logit to model recreational choices by 

swimmers in the Boston area and value the associated water quality attributes. Morey, 

Shaw and Rowe (1991) also used a nested RUM to control for the decision of whether or 

not to participate in recreational fishing in the Oregon coast and value the elimination of 

fishing opportunities at particular locations. Similarly, Greene, Moss and Spreen (1997) 

use a RUM of fishing in the Tampa Bay region to value the loss of access to the fishing 

grounds. Kaoru’s (1995) nested site choice model values changes in combinations of 

quality for anglers in coastal North Carolina. Most recently, Thomas, Lupi, and Harding 

(2010) create a model of site choice using ramp access points as nests and on-water 

locations as the elemental sites, and use their model to value the benefits of mantaining 

and improving boat ramps in the Fort Myers, Florida area.  

One commonality among site choice models of recreational fishing is the use of 

catch as a quality attribute, primarily because catch rates are policy relevant. While catch 

is available for the intercepted trip, it is not available for rejected sites by the same 

individual. McConnell, Strand and Blake-Hedges (1995) propose a two stage process in 

which a catch equation is estimated in the first stage and used to create a quality attribute 

for the alternatives used in the estimation of the site choice model, the second stage. This 

process gives a proxy of the angler’s ex-ante expectation of catch and thus expected 

quality of the fishing experience at the chosen site. Such an approach allows variation in 

site attributes among alternatives at the trip level. Haab et al. (2010) follow this approach 

to value different sets of marine species using a series of site choice models. 
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The second type of RUM developed by McFadden, the conditional logit, is 

limited by the assumption of independence of irrelevant alternatives (IIA). The IIA 

assumption is violated when there is correlation of unobserved characteristics between 

alternatives. While the nested logit allows the researcher to establish a priori which 

alternatives are expected to be correlated with each other through the specification of 

nests, some problems may not be amenable to such specification or the specification may 

not be intuitive. The mixed or random parameters logit (Train 1998, 2003) and the latent 

class logit (Boxall and Adamowicz 2002) do not rely on the restrictive IIA assumption, 

with the added benefit that heterogeneity in the sample can be explicitly accounted for 

either by the estimation of distributions of the parameters in the former, or separation of 

the sample into latent classes in the latter. 

Some problems involved in the estimation of site choice models are related to the 

computing power required to estimate models with many alternatives, as well as the 

limited scope of data collected during intercept surveys. Researchers can aggregate or 

eliminate sites to reduce the number of choices modeled and several studies have 

investigated the merits of each approach. Parsons and Needleman (1992) develop a site 

choice model of fishing in Wisconsin lakes to analyze the effect of aggregating 

recreational sites on estimates of the value of different site characteristics, and caution 

against the use of aggregation schemes due to the introduction of bias on welfare 

estimates. In a similar study, Parsons and Kealy (1992) model choices of recreational 

users of Wisconsin lakes engaging in different activities, and use the model to analyze the 

effect of using randomly drawn subsets of alternatives—rather than the complete set—to 

estimate the parameters of the RUM. These two studies suggest that using random draws 
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from the alternative set may be more effective than aggregating sites as a way to ease 

computational requirements. These conclusions are echoed by Feather’s (1994) analysis 

of sampling and aggregation using a site choice model of sport fishers in Minnesota. Lupi 

and Feather (1998) offer a pragmatic solution in which unimportant sites are aggregated, 

while those that are heavily visited or will be affected by policy changes are kept in their 

elemental form. Whitehead and Haab (2000) use a different approach by examining the 

use of distance and historical catch to eliminate sites that are either too far or too 

unproductive to warrant inclusion as a viable choice; they find results are not 

significantly affected by the elimination of non-viable choices determined using these 

criteria for marine recreational anglers in the Southeastern United States. Lastly, 

Hindsley, Landry, and Gentner (2011) develop a RUM for private boat-based anglers in 

the southeast, use it to investigate the problems inherent with on-site sampling and 

propose a correction method based on propensity scores that mitigates the sample 

selection bias.  

In this study, we use Marine Recreational Information Program (MRIP) intercept 

data from the Southeast U.S. and follow the two stage approach proposed by McConnell, 

Strand and Blake-Hedges (1995) to create proxies for the ex-ante expectation of angler 

catch as a site quality index. We aggregate the 85 coastal counties into 10 zones, and 

allow substitution in sites as well as in time periods. While aggregation would be 

expected to introduce bias in welfare estimates to the extent that site quality differs within 

an aggregation, it is considered appropriate for examining the substitition patterns 

observed by marine anglers visiting the Southeast U.S. before, during and after the DWH 

oil spill. This is because the spill affected a very large portion of the Gulf coast such that 
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multiple elemental sites were affected concurrently. The substitution pattern we are 

interested in examining is between broad areas (e.g., states) in the Gulf and South 

Atlantic rather than between elemental sites with equal access to primary fishing grounds 

(or consideration of species caught). Aggregated sites (and species) allow substitution 

between these two distinct areas, while keeping the dataset manageable enough to allow 

intra-year trip subsitution (i.e., delayed trips). Also, rather than focus solely on the 

monetary valuation of the oil spill’s impacts on anglers, we take an approach similar to 

that of Parsons and Kang (2010) and also analyze avenues for compensatory restoration 

of the affected areas.  

 

Site Choice RUM for DWH Impacts on Marine Anglers 

The RUM is a model of choice among a set of available alternatives. In the case of 

recreational fishing, the RUM models the choice an individual angler makes between 

available fishing sites because of the attributes of the site, such as the costs of travel, the 

historic and expected catches of fish, and the popularity or accessibility of the fishing 

site, among others (Bockstael, McConnell and Strand 1991). In our case, we consider the 

presence of oil near the coastline, as indicated by the NOAA fishery closure maps, as an 

indication of site quality (e.g., Figure 1).  

 Following Train (2003), individual n decides to go fishing in saltwater, and must 

choose from among a set J available alternatives (j = 1, …, J). The utility of angler n 

from selecting alternative j is denoted Unj. Angler n chooses the alternative that 

maximizes her utility. That is, site j is chosen if 

 

€ 

Unj >Unh∀h ≠ j .        (1) 
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However, the angler’s utility is unobservable.  Instead, we observe some attributes of the 

fishing locations as faced by the angler (qnj), with travel costs (TCnj) being one of these 

attributes. Based on these observables, we specify a function (Vnj) that relates these 

attributes to the angler’s utility, and which we refer to as indirect utility, 

€ 

Vnj (TCnj ,qnj ) . 

Since there are likely to remain unobserved factors in the angler’s utility function, we can 

express utility as being composed of a deterministic component (Vnj) and a stochastic 

component (εnj) that captures the factors that affect the angler’s well-being but are not 

accounted for, such that 

 

€ 

Unj =Vnj (TCnj ,qnj ) +εnj ,       (2) 

where the joint density of the random component εn = [εn1,…, εnJ] is denoted f(ε). 

 As previously stated, the angler chooses the alternative that yields the maximum 

utility form among the available set. The probability that angler n choose alternative j is 

thus given by 

 

€ 

Pnj = Pr(Vnj +εnj >Vnh +εnh∀j ≠ h) 	  

	   	  	  	  	  	  	  	  

€ 

= Pr(εnh −εnj >Vnj −Vnh∀j ≠ h) .      (3) 

Using the density of the stochastic terms f(ε), this cumulative probability can be 

expressed as 

 

€ 

Pnj = I(εnh −εnj >Vnj −Vnh∀j ≠ h) f (εn )dεnε
∫ ,    (4) 

where I(.) is the indicator function that equals one when the expression in parenthesis is 

true and zero otherwise. Assuming that the stochastic terms are independent and 

identically distributed extreme value yields McFadden’s (1974) conditional logit, where 

the probability takes the form 
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€ 

Pnj =
eVnj

eVnh∑
.         (5) 

The conditional logit can be estimated using maximum likelihood methods. 

We specify the indirect utility function to be linear in the attributes of the 

alternatives to facilitate the derivation of the subsequent measures used to assess the 

impacts of the DWH oil spill. The utility that angler n obtains from choosing alternative j 

can then be expressed as 

 

€ 

Unj = ʹ′ β qnj +εnj ,        (6) 

where qnj is a vector of attributes and β is a vector of model parameters. Preferences for 

the different attributes of available alternatives are reflected in the estimated parameters 

(β). Heterogeneity in preferences can be introduced by allowing a cumulative density 

function f(β) for the estimated parameters. In this case, the choice probability becomes 

 

€ 

Pnj =
e ʹ′ β qnj

e ʹ′ β qnh∑

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ ∫ f (β)dβ ,       (7) 

which is referred to as the mixed or random parameters logit model, and can be estimated 

using simulated maximum likelihood methods. 

 To examine the welfare impact of a change in a quality attribute across all sites, 

we decompose the indirect utility function explicitly into travel costs (TCnj) and other 

attributes, so that angler n’s utility from choosing alternative j is given by 

 

€ 

Unj = αTCnj + ʹ′ β qnj +εnj ,       (8) 

where α is interpreted as the marginal utility of income.  

 Now, suppose we want to evaluate the welfare impact of a proposed change in 

quality from the initial level of quality (qnj) to an alternative level (qnj
*), where 
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€ 

qnj
* = qnj + Δq .         (9) 

The welfare measure for such a quality change is given by the difference in the sum of 

the indirect utilities across sites under both states of the world, weighted by the marginal 

utility of income as follows 

 

€ 

W =
1
α

Ln exp Vnj
* (TCnj ,qnj

* )[ ]
j=1

J

∑ − Ln exp Vnj (TCnj ,qnj )[ ]
j=1

J

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
,  (10) 

which, as shown by Haab and McConnell (2002), reduces to 

 

€ 

W =
1
α

ʹ′ β Δq,         (11) 

the per trip welfare measure or willingness-to-pay to prevent a decrease in quality, or 

conversely, to purchase an increment in a quality attribute. Accordingly, the sign of W 

depends on whether anglers perceive the quality change as an improvement or damage to 

the fishing experience. 

 Now, suppose that rather than being interested in monetary measures of 

compensation for quality changes, we try to find policies that could compensate anglers 

for these changes in-kind. That is, suppose we want to compensate anglers for a decrease 

in one quality attribute with a change in a second attribute. This is what is known as 

compensatory restoration (Jones and Pease 1997; Flores and Thacher 2002). To do so, 

assume that, in addition to travel costs, there are only two quality attributes, qn1 and qn2, 

respectively.  Angler n’s utility of choosing alternative j is then given by 

 

€ 

Unj = αTCnj + β1qn1 + β2qn2 +εnj .      (12) 

If an unforeseen event were to result in a decrease in qn1 of Δq1, we could find a 

corresponding change in qn2, Δq2, that would leave the angler as well off as before the 
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event. To be explicit, let Unj be the angler’s utility before the event, and Unj
* the utility 

after the event, such that 

 

€ 

Unj TCnj ,qn1,qn2( ) =Unj
* TCnj ,(qn1 − Δq1),(qn2 + Δq2)( )     (13a) 

 

€ 

αTCnj + β1qn1 + β2qn2 +εnj = αTCnj + β1(qn1 − Δq1) + β2(qn2 + Δq2) +εnj
* . (13b) 

As shown by Flores and Thacher (2002), the expected amount of compensatory 

restoration or change in qn2 required to offset the change in qn1 reduces to 

 

€ 

Δq2 =
β1
β2
Δq1.         (14) 

This relationship allows us to use the results of a random utility model that considers both 

the affected quality attribute and additional attributes, which can be treated as candidates 

for restoration activities, to find the necessary changes in attributes to compensate anglers 

for unforeseen losses in quality. 

 

Data Sources and Specification of Site Attributes and Alternatives 

The Marine Recreational Information Program (MRIP) conducts intercept surveys of 

recreational anglers throughout the year (Hicks et al., 2000). These surveys focus on the 

level and composition of catch to provide statistics on catch and fishing effort by species. 

The data is reported by two-month periods referred to as waves. For this study, we 

assembled the intercept datasets for years 2006 through 2010, the year in which the DWH 

oil spill occurred. 

MRIP intercepts in the Southeast U.S. are conducted in several locations from 

Louisiana to North Carolina. Several authors who have worked with MRIP have used 

county level aggregation to define their sites (e.g., Morey, Shaw and Rowe 1991; 
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McConnell, Strand and Blake-Hedges 1995; Whitehead and Haab 2000; Haab, 

Whitehead and McConnell 2001; Haab et al. 2010; Hindsley, Landry and Gentner 2011). 

We aggregate further given the objective to measure the impact of the DWH oil spill, 

which occurred in the Gulf of Mexico, and define a set of 10 regions. The states of 

Lousiana, Mississippi, Alabama, Georgia, South Carolina, and North Carolina are 

defined as individual regions. Florida is divided into four regions: Northwest, Southwest, 

Florida Keys, and Florida Atlantic (Figure 2).   

 To include oil spill specific effects, we also include a time dimension to the 

available alternatives based on the waves that correspond to data collection. This allows 

us to include the effects of the DWH oil spill in a spatially and temporally explicit 

manner. The final alternative set for each angler then includes the 10 alternative sites in 

six possible seasons for a total of 60 available alternatives.   

 In a RUM of recreational fishing choices, the probability of an angler choosing a 

particular site to go fishing is estimated as a function of the attributes of the chosen 

alternative and the available alternatives. At the moment the fishing site is chosen, the 

angler has at best a limited expectation of what his catch will be. Furthermore, it can be 

expected that different anglers will catch different numbers of fish, even if they visit the 

same area. Given the limitations of the data being used for this analysis (i.e., lack of 

angler-specific information), the major site attributes considered in the analysis are travel 

costs to the site and the expected number of fish caught, which serves as an indicator of 

trip quality as experienced by the angler. Additionally, we consider proxies for the size 

and popularity of each alternative region, as well as indicators for trips that take place in 
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the spring, summer, and fall, whether the fishing location is located in the Gulf of 

Mexico, and whether the alternative trip could have been affected by the oil spill. 

 The historical catch and keep rate (HCKR) in a given site is a good indication of 

the expected catch in a fishing trip to that location. However, the catch can also be 

expected to differ seasonally and between fishing modes. For instance, anglers fishing 

from a boat in mid-spring can be expected to enjoy different catch rates than anglers 

fishing from the shore in late summer. To calculate the historical catch and keep rate in a 

given site during a given year, we use the mean catch and keep rate in the previous four 

years, separated by fishing mode and wave. The three fishing modes considered are shore 

fishing, fishing from a private or rental boat, and fishing from a charter or party boat (for-

hire fishing). This historical catch and keep rate, which is unique to each site, fishing 

mode, and wave, can then be used to predict the catch that an individual angler would 

experience, taking account of the mode used and the time of the year in which the trip 

takes place.   

Another key variable that will help determine the number of fish caught and kept 

is the number of days an individual has fished in the last year. For an angler, experience 

can be an important determinant of success, as the more experienced fisher can be 

expected to have some knowledge regarding appropriate bait, tackle, and good fishing 

spots, among others, that the less experienced angler lacks. Fishing experience, in this 

case, is indicated by the number of days an individual has fished in the last year. 

However, there is an unobservable attribute, fishing avidity, which can be expected to 

influence both the expected catch and the number of days fished in the last year. More 

avid or better anglers, for one, can be expected to catch more fish than their less avid 
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counterparts. More avid anglers can also be expected to fish more often, although the 

causality between fishing experience and fishing avidity may not be so straightforward. 

In other words, it is difficult to determine whether an individual becomes a good angler 

because he fishes often, or if avid anglers enjoy fishing more and therefore take more 

fishing trips than less avid anglers.   

 To deal with this endogeneity problem we use the method of instrumental 

variables (Greene 1997, pp. 288-295). The only angler information available is the zip 

code of their permanent residence, which was used to calculate the distance traveled to 

the site and obtain a proxy for income. Distances between each respondent’s county of 

residence and a mid-point of the alternative site in which the intercept was conducted 

were calculated with Microsoft MapPoint 2004, using a Visual Basic program to 

calculate distances by batches. Median income was obtained from the Census Bureau’s 

Small Area Income and Poverty Estimates. The distance traveled to the site and median 

household income—as well as several mathematical transformations of these variables 

such as the squared, cubed, and logarithmic terms—are used as instruments to predict the 

number of fishing trips that the respondent took during the last year. This model is 

referred to as the participation model.   

The catch and keep rate that each angler is expected to enjoy can be estimated as a 

function of angler, trip, and site attributes. The predicted catch serves as an individual-

specific indicator of site quality, which allows greater heterogeneity in estimation of the 

site choice models (McConnell, Strand and Blake-Hedges 1995). We use a negative 

binomial regression procedure to estimate the predicted catch and keep rate for each 

individual. The negative binomial was preferred over the Poisson procedure because it is 
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better able to control for overdispersion in count data regressions (Haab and McConnell 

2002). This model is used to predict the catch and keep rate of each angler for all 

available alternatives. 

Lastly, site choice models are estimated for each fishing mode; private/rental 

boat, for-hire, and shore. Private and rental boat anglers may behave differently, but they 

are treated as a single mode during the MRIP data collection, hence dissagregation of this 

mode is not possible. Separating out the models both reduces the dimentionality of the 

model and allows for a better representation of site choice, which is expected to vary by 

mode. For example, site choice models could include information on individual anglers 

such as race, gender, employment status, boat ownership, and number of years fishing 

(experience). Several of these variables have been used in studies that use MRIP data in 

the years when economic data was collected, most notably 2000 (Whitehead and Haab 

1999; Haab et al. 2001; Haab et al. 2010). Unfortunately the last Add-On MRIP 

Economic Survey (AMES) was conducted in 2006. In particular, not having information 

on income and employment status presents critical problems in travel cost models, where 

consideration of the value of time is especially important (Bockstael 1995). 

The site choice models in this study use estimates of travel costs for all possible 

trips in addition to the observed trip. Thus, we created a matrix of distances between all 

alternative sites and all counties of residence of intercept respondents. Travel related 

expenses (TravelExp) incurred by angler n traveling to site j were calculated as twice the 

product of the driving distance and the standard IRS mileage rate in 2009 ($0.55/mile) as 

follows 

 ,       (15) 
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where Dnj is the one-way distance between the angler’s county of residence and the 

fishing site.  

 In order to engage in a recreational activity such as fishing, participants must not 

only spend some of their disposable income to pay for travel related expenses, but in 

many cases must give up work or other wage-earning opportunities. This opportunity cost 

of time must also be factored into travel cost recreational demand models for accurate 

measure of the value of the recreational experience. In our case, the best indication of an 

angler’s opportunity cost of time is the median income in his or her county of residence. 

We estimate time related expenses (TimeExp) as: 

 

€ 

TimeExpnj = γ
MedIncomen
2,080

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2Dnj

40
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,     (16) 

where γ = 0.33 indicates the share of the value of travel time used to account for the cost 

of leisure time (this is the standard rate used, which was first proposed under Executive 

Order 11747), and MedIncomen is the median annual income in the respondent’s county 

during the year the fishing trip took place. Median income is divided by 2,080, the 

number of full-time hours potentially worked in a year. The distance term is divided by 

40, reflecting the assumption that road travel takes place at an average speed of 40 miles 

per hour (Haab et al. 2001). Total Travel Costs (TC) are the sum of travel and time 

related expenses and total travel costs are expected to be indirectly related to site choice 

for all modes.  

 

Results 

The empirical analysis consists of estimating models for participation (days fished in past 

12 months), catch (number of fish caught and kept in intercepted trip), and site choice (by 
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fishing mode: shore, for hire, and private/rental), and the calculation of per trip welfare 

measures and change in catch to compensate for the oil spill. Each analysis is 

summarized in turn. Descriptions of variables used in all models are reported in Table 1.   

 

Participation Model 

The predicted participation rate of each angler in the Gulf of Mexico and the South 

Atlantic interviewed in the MRIP intercepts was estimated using a negative binomial 

regression. For this regression, the dependent variable selected was ffdays12, the number 

of days the respondent went fishing in the last 12 months. The results from the 

participation model are shown in table 2. 

 The instruments perform relatively well as predictors of participation in 

recreational fishing, as indicated by the large number of statistically significant 

coefficients, although the goodness of fit is rather low. The decision to participate in 

recreational fishing is a complex one, and it is unlikely that a model with a high goodness 

of fit measure can be developed without very detailed information on individual 

preferences for things like outdoor activities, as well as individual attributes like age, 

race, income, and gender, among others. The predicted values for this regression are 

saved as a new variable, pred_fdays, which is used in the ensuing analysis. 

 

Catch Model 

A model that predicts each angler’s catch as a function of the historic catch in the visited 

site and the time spent fishing, among others, was also estimated using a negative 

binomial regression (Table 3). This model’s goodness of fit measure is also low, but as in 
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the participation model the independent variables are good predictors of fishing success. 

In particular, the number of hours fished (hrsf) and the historic catch and keep rate in the 

site (hckr), are both predictors of the catch experienced by an angler, and both have a 

positive impact on catch, as expected. The distance from shore, as indicated by the area1 

and area2 coefficients, as well as the fishing mode used (mode1, mode2), are also strong 

predictors of catch. The predicted value equation from this model is used in the ensuing 

analysis to create the individual-specific site-season attribute pred_catch, which gives an 

indication of the number of fish we expect each angler to catch if he had visited the 

alternatives that were rejected. 

 

Site Choice Models by Fishing Mode 

The estimates from the site choice models are shown in tables 4 through 6 for shore 

fishing, for-hire fishing, and private/rental boat fishing, respectively. To compare 

individual parameter estimates from the baseline condition, which we take to be the year 

2009, to those from the event in year 2010, we use a difference ratio that is computed as 

 

€ 

DR =
(β2010 − β2009)

β2009
.        (17) 

This difference ratio is a rough percentage change measure, which takes a negative value 

if the parameter estimate decreases in value, and a positive value is it increases. Care 

must be exercised when interpreting the difference ratio of parameter estimates with a 

negative sign, as a negative ratio implies that the parameter grows in absolute value since 

it becomes more negative. Difference ratios are calculated only for parameters that are 

statistically significant across years and are compared across modes in table 8.  
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 The coefficients on travel costs (TC) are statistically significant and of the 

expected sign throughout the six models. Also, the coefficients remained relatively stable 

from the baseline year to the event year, as the largest difference ratio is that of for-hire 

fishing, which reflects a change of less than 6 percent. The response to travel costs is 

strongest for private and rental boat anglers. This relative strength of response is not 

surprising as those using private boats are more likely to be pulling their boats on trailers 

and be less eager to drive longer distances. 

 The coefficient on count, which indicates the number of anglers in the sample 

who visit the chosen location, serving as a proxy for the popularity of the site, is also 

statistically significant and of the expected sign, although not very stable across years. 

The positive sign indicates that anglers are more likely to visit the more popular 

locations, which can be an indication of good and accessible fishing grounds. All 

coefficients are of the same order of magnitude across the six models. The difference 

ratio, which ranges from 68 percent for shore anglers to 13 percent for private and rental 

boats, is negative for all three modes. This may indicate that popular sites were hard hit 

by the oil spill, and anglers may have substituted from the locations which have been 

traditionally favored to other, less popular locations. 

 Historic catch and keep rates (hckr) in the fishing zones are good predictors of site 

choice for all modes except private and rental boats. In the shore and for-hire models, the 

coefficient on this variable is statistically significant and positive, as expected, indicating 

that anglers prefer sites with higher historic catch. The difference ratio for these two 

modes is also negative and in the 25-30 percent range, which signals that during the oil 

spill anglers using these modes may have substituted towards locations with lower catch 
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than the areas that were traditionally visited. The hckr coefficient was not statistically 

significant for private and rental boat anglers in both the baseline and event years so the 

difference ratio could not be calculated. 

 Seasonal indicators summer, spring, and fall all yield positive and significant 

parameter estimates as evidence that anglers prefer fishing during the warmer months of 

the year compared to the winter baseline. The difference ratios for these variables show 

that seasonal substitution from the baseline year to the event year was substantial. While 

changes in the difference ratios in the for-hire fishing model were in the 15-24 percent 

range, those for private and rental boats exhibit much more drastic changes that exceed 

100 percent. That is, in some cases the magnitude of the coefficient in the event year is 

more than twice what it was in the baseline year. Using the difference ratios we can 

deduce that seasonal substitution was strongest for private and rental boat anglers and 

weakest for anglers who use the for-hire sector, with that of shore-based anglers 

somewhere in between. 

 The coefficient on the gulf regional indicator is statistically significant across all 

models. The sign, however, is positive in the shore and for-hire models and negative in 

the private and rental boats models. The seeming conclusion is that, on average, shore-

based and for-hire anglers prefer the Gulf of Mexico, while private and rental boat 

anglers prefer the Atlantic coast. Surprisingly, it also appears that during 2010 anglers 

using all modes substituted towards the Gulf, as shown by the positive difference ratio 

across models. As we will see, this does not mean that anglers preferred locations 

affected by the oil spill. 
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 Parsons and Needleman (1992) suggest including the number of elemental sites in 

each aggregate site as a variable in site choice models to control for aggregation bias. In 

our case, the number of elemental sites was not available. We therefore create the size 

variable as proxy for this value using the number of counties included in each of the 

aggregate zones in our analysis. The parameter estimate for size is statistically significant 

in the for-hire and private and rental boat models. The sign, however, is negative in the 

for-hire and positive in the private and rental models. While this may seem incongruous 

at first, there is a possible explanation. A few zones with a small number of counties may 

be responsible for a large portion of for-hire trips. One of these zones is the Florida Keys, 

which are composed of only one county, but are arguably the most important destination 

for guided fishing trips. Other locations with small size value but with important for-hire 

sectors are Mississippi and Alabama, which have only three and two coastal counties, 

respectively. Conversely, anglers pulling trailers with boats for long distances may be 

reluctant to fish in the Florida Keys due to the distance that must be travelled. The 

difference ratio is positive in both cases and in the 30 – 60 percent range, indicating that 

the oil spill may have driven for-hire and private and rental boat anglers to ‘larger’ 

locations than those they would have visited otherwise. The parameter estimate for the 

shore model in the baseline year is not statistically significant; hence we deem this aspect 

of that model inconclusive. 

 Our predicted catch index appears not to be a good predictor of site choice, as the 

parameter estimates are not statistically different from zero in the shore and private and 

rental boat models. In the for-hire model, the coefficients are significant, but the negative 

sign implies that anglers prefer locations in which they would catch less fish. This 
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unlikely response to catch deems this aspect inconclusive and warrants further work on 

the development of this attribute for use in the present models.  

 The indicator of oil spill effects, spill, was included in both the baseline and event 

year models for two reasons. First and most obvious, this is the main variable of interest, 

as it will aid in determining whether anglers’ choices were affected by the spill. Second, 

spill is included in all models to analyze the baseline preferences for the combinations of 

locations and seasons that were affected by the DWH spill. Ideally, the coefficient on 

spill for 2009 would not be significantly different from zero, which would imply that all 

attributes that make season-site combinations desirable are accounted for. This, however, 

is the case only in the for-hire model. In the shore-based and private and rental boats 

models the parameter estimate is significant and positive at a 0.05 and 0.01 level, 

respectively. This suggests that our models do not account for all attributes that factor 

into angler’s choices, and furthermore, that the 2010 parameter estimates on spill are 

downward biased and do not fully capture the detrimental impact of the DWH spill on 

anglers. It is evident from our models, however, that the spill is perceived as a negative 

attribute in 2010, as indicated by the negative and significant parameter estimates for all 

event year models. The magnitude of this negative effect differs across fishing modes, 

with shore anglers showing the strongest aversion to alternatives affected by the DWH 

spill. 

 

Welfare Measures for Oil Spill Prevention 

Development of welfare measures (eqs. 10-11) for a change in a quality attribute requires 

the construction of a counterfactual scenario where the quality attribute would have been 
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different. In our case, the counterfactual scenario is the complete prevention of the DWH 

spill. Thus we use a Δq of minus one in our calculations of welfare measures, reflecting a 

scenario where the oil spill did not occur.   

 As stated previously, our spill parameter estimates for the event year are 

downward biased, as evidenced by the positive and statistically significant coefficients in 

the shore and private boat models in the baseline models. We can establish a correction 

factor for this bias so that the entire difference between the baseline and event cases is 

accounted for. Specifically, we can take the difference between the parameter estimate 

from the event year model (βevent) and that from the baseline model (βbaseline) to be the 

corrected estimate of the spill impact coefficient (βspill): 

 

€ 

βspill = βevent − βbaseline .        (18) 

This correction yields the estimates labeled as Wcorrected in table 7. The correction 

increased the welfare loss estimates for the shore-based and private/rental fishing modes.  

 The corrected per trip welfare measures are largest for shore anglers and smallest 

for private and rental boat anglers. It seems intuitive that for-hire and private and rental 

boat anglers generally are expected to pay more for a fishing trip, thus their willingness-

to-pay (WTP) to prevent an oil spill would be higher. However, the welfare measure is a 

direct function of the strength of the response to the oil spill, which is strongest for shore-

based anglers. Hence, estimated WTP is highest for shore-based anglers at $110.19 and 

lowest for private and rental boats at $32.91. The corrected WTP for the for-hire sector 

did not, however, increase from the original estimate of $76.61 since the parameter was 

not statistically significant.  
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Compensatory Restoration 

As an alternative to focusing on monetary compensation to anglers who were 

detrimentally affected by the DWH spill, the natural resource trustees could consider in-

kind compensation through restoration programs (Jones and Pease 1997; Flores and 

Thacher 2002; Parsons and Kang 2010). If so, we could use models such as ours to 

estimate the necessary amount of restoration required to make anglers whole. Even 

though our model is not very rich in site attributes that could be changed through 

restoration programs, one attribute that stands out as a possible candidate is historic catch 

(hckr). While historic catch is not the same as fish stock, it is likely that increases in the 

total number of fish in an area would result in higher catches for anglers fishing in that 

area. 

 The estimated increase in historic catch necessary to compensate anglers for the 

DWH spill is also shown in table 7 for the three fishing modes considered. The actual 

increase in catch required is similar across fishing modes, which is surprising considering 

the large variation in monetary estimates of compensation. Private and rental boat anglers 

require the largest increase in catch to be whole, at an average of 0.44 to 1.68 additional 

fish per trip for the uncorrected and corrected measures respectively. Shore-based anglers 

require an average increase of 0.32 to 0.36 fish per trip, while for-hire anglers require an 

increase of only 0.16 fish per trip. 

 

Discussion 

A set of random utility models of site choice constructed using aggregated MRIP data 

allow us to examine the major substitution patterns among Southeast anglers that took 
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place in 2010 as a result of the DWH oil spill. Furthermore, these models allow us to 

estimate monetary and in-kind compensation measures that would make recreational 

marine anglers whole. In summary, the bias-adjusted per trip welfare measures for spill 

prevention ranged from approximately $32 for the private/rental boat fishing mode to 

$110 for the shore-based fishing mode (the for-hire WTP was $77/trip). Average catch 

would have to increase by 0.16 to 1.68 fish per trip for the for hire and private/rental 

modes, respectively, to fully compensate anglers for losses due to the DWH oil spill.  

 Estimating separate models for different fishing modes and using a difference 

ratio measure allows us to evaluate substitution choices across anglers due to the spill 

(table 8). Seasonal substitution, for instance, was strongest among anglers using private 

and rental boats and weakest among anglers using the for-hire sector. This may be 

because anglers using the for-hire sector may seek to reserve trips with a specific guide in 

advance of their travel dates. As such, flexibility or substitutability across seasons is 

likely to be low. On the other hand, boat owning anglers may be able to plan a trip 

relatively quickly, and are probably as likely to cancel, reschedule, or change the location 

of a planned trip as they are to take a previously unplanned trip on short notice. Our 

models are therefore capturing the relative flexibility that private boat anglers have in 

rescheduling or otherwise changing fishing trips relative to other modes. For-hire 

operators may therefore be especially hard hit by events such as oil spills since their 

customers are less likely to reschedule trips or more likely to cancel trips outright if 

conditions are bad enough to force fishery closures or severely limit fishing 

opportunities. Judging from these substitution patterns, it is unlikely that for-hire 

operators would recoup their losses at a later time in the year.  



25 

 An examination of difference ratios also reveals substitution pattern away from 

sites in the Gulf of Mexico, which are more popular (in terms of the numbers of anglers 

intercepted), toward sites in the South Atlantic due to the DWH oil spill. The difference 

ratio for historic catch also shows that anglers in 2010 were driven towards high catch 

areas than they were in the baseline year. More tellingly and as expected, the presence of 

oil or oil residue near the coastline was perceived as a negative attribute of a trip (i.e. 

negative sign on the spill coefficient for 2010), although this detrimental effect is 

perceived differently by anglers using different fishing modes. In sum, the DWH spill 

induced changes in anglers’ preferences for fishing seasons and locations, and it drove 

anglers to less preferable alternatives. 

 Our models also allowed us to develop in-kind measures of compensatory 

restoration in the form of increased catches. Higher average catches are traditionally 

provided through restoration initiatives, such as restocking or habitat enhancement 

programs. The relationship between fish stocks and catch is, however, not direct for all 

species and all fisheries that would make such an approach a sub-optimal form of 

compensation. Re-allocation of quotas that are distributed between commercial and 

recreational sectors could also be used to increase recreational catch rates, although not 

with certainty and not without controversy. In general, due to the relatively large fishing 

sites and multi-species targeting environment in the Gulf and South Atlantic, increasing 

stocks of specific species may not improve welfare across all anglers. 

 In conclusion, three issues remain with respect to our analysis of the Gulf versus 

Atlantic substitution patterns by marine anglers using different fishing modes. First, the 

conditional logit model, which we use to estimate the RUMs, relies of the IIA assumption 
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and ignores heterogeneity in preferences. While some of this heterogeneity is explicitly 

accounted for by the segregation of fishing modes, we can expect heterogeneity within 

fishing modes as well. Using a random parameters or mixed logit model could ameliorate 

this problem. Second, our predicted catch measure that was used to construct 

compensatory restoration measures fails to capture the expected relationship between site 

choices and expected catches, especially by species, which may be due to colinearity with 

the historic catch measure. Whatever the case, improvement in this aspect of the analysis 

is likely to improve the overall results. Lastly, we are not able to ascertain whether the 

areas affected by oil have returned to their pre-spill state. Updating the models with more 

recent data could be used to discern the long-term effects that the DWH spill has had on 

marine angler site preferences in the Southeastern U.S., and whether further 

restoration/compensation may be warranted. It is possible that while cleanup and 

restoration have been effective from a biological and ecological standpoint, the Gulf 

coast may yet require restoration of a different type: restoring of the Gulf’s image as a 

desirable fishing area in anglers’ minds. 
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Figure 1. Federal Fishery Closure in the Gulf of Mexico in Response to the 
Deepwater Horizon Oil Spill, July 13, 2010 

 

 

Figure 2. Ten Coastal Regions in the American Southeast
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Table 1. Model Variables 

Variable Description 
hrsf Hours spent fishing during intercepted trip 
ffdays12 Number of days fished in last year 
med_income Median annual income in respondent’s county of residence 
wavei Dummy for wave i (i = 2nd, 3rd, 4th, 5th, or 6th) 
mode1 Dummy for 1st mode (shore fishing) 
mode2 Dummy for 2nd mode (for hire fishing) 
mode3 Dummy for 3rd mode (private or rental boat) 
area1 Dummy for fishing in the ocean, close to shore 
area2 Dummy for fishing in the deep ocean, offshore 
area3 Dummy for fishing inland or inshore 
targ Dummy for targeting any species 
rdistance One-way istance between county of residence and zone in miles 
cpue Catch per hour for intercepted trip 
hckr Historic CPUE from previous 4 years, specific to wave and mode 
inc2 med_income squared 
inc3 med_income cubed 
ln_inc Natural log of med_income 
dist2 Rdistance squared 
dist3 Rdistance cubed 
ln_dist Natural log of rdistance 
count Number of intercepts made in the alternative zone 
al Dummy for intercepts made in Alabama 
fl Dummy for intercepts made in Florida 
ga Dummy for intercepts made in Georgia 
la Dummy for intercepts made in Louisiana 
ms Dummy for intercepts made in Mississippi 
nc Dummy for intercepts made in North Carolina 
sc Dummy for intercepts made in South Carolina 
west Dummy for respondents from the Western United States 
southwest Dummy for respondents from the Southwestern United States 
midwest Dummy for respondents from the Midwestern United States 
northeast Dummy for respondents from the Northeastern United States 
southeast Dummy for respondents from the Southeastern United States 
pred_fdays Predicted participation in number of days fished in last year 
pred_catch Predicted catch and keep rate 
TC Round trip travel cost to site 
spill Dummy for oil spill effects on intercept zone 
summer Dummy for May-August alternative 
spring Dummy for March-April alternative 
fall Dummy for September-October alternative 
gulf Dummy for Gulf of Mexico alternative 
size Number of counties in the aggregate region 
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Table 2. Negative Binomial Participation Model of Days Fished in the Last 12 
Months 

Variable Coef. Std. Err. Z P>|z| 
mode1 0.2032 0.0137 14.79 0 
mode2 -1.4253 0.0270 -52.71 0 
area1 0.0357 0.0134 2.67 0.008 
area2 0.0439 0.0208 2.11 0.035 
med_income 0.0003 1.18E-5 25.69 0 
inc2 -4.68E-09 2.01E-10 -23.32 0 
inc3 2.18E-14 1.08E-15 20.25 0 
rdistance -0.0059 0.0002 -35.37 0 
dist2 4.03E-06 1.38E-07 29.2 0 
dist3 -6.37E-10 2.80E-11 -22.73 0 
ln_dist 0.1744 0.0135 12.92 0 
targ 0.4958 0.0108 45.77 0 
wave2 -0.1839 0.0235 -7.84 0 
wave3 -0.2595 0.0225 -11.51 0 
wave4 -0.3629 0.0227 -16.01 0 
wave5 -0.1979 0.0231 -8.57 0 
wave6 -0.1670 0.0251 -6.77 0 
hckr -0.4088 0.0603 -6.78 0 
al 0.0506 0.0414 1.22 0.221 
fl 0.5823 0.0328 17.77 0 
ga -0.0752 0.0444 -1.69 0.091 
la -0.0751 0.0347 -2.16 0.030 
ms 0.5454 0.0439 12.42 0 
nc 0.2189 0.0455 4.81 0 
count -3.63E-07 1.95E-06 -0.19 0.852 
southwest -0.2292 0.0630 -3.63 0 
northeast -0.2025 0.0344 -5.89 0 
west -1.5542 0.1101 -14.06 0 
midwest 0.0229 0.0417 0.55 0.584 
constant -3.1087 0.2295 -13.54 0 
Model statistics:     
   LR chi2(26) 25,651.39   0.0 
   Pseudo R-squared 0.043    
   Observations 72,312    
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Table 3. Negative Binomial Predicted Catch Model of Fish Caught and Kept 

Variable Coef. Std. Err. Z P>|z| 

targ 0.4644 0.0301 15.43 0 

mode1 -0.1450 0.0344 -4.22 0 

mode2 0.1237 0.0563 2.2 0.028 

area1 0.1326 0.0321 4.13 0 

area2 0.5022 0.0470 10.69 0 

hrsf 0.2064 0.0074 27.96 0 

hckr 3.2048 0.1248 25.69 0 

pred_fdays 0.0003 0.0009 0.4 0.689 

count -1.48E-06 1.95E-06 -0.76 0.448 

med_income -8.49E-06 1.23E-06 -6.91 0 

constant -2.0486 0.0894 -22.93 0 

Model statistics:     

   LR chi2(10) 4,366.05   0 

   Pseudo R-squared 0.0354    

   Observations 72,312    
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Table 4. Conditional Logit Model of Shore Fishing Site Choice 

 Baseline (2009)  Event (2010)  

Variable Coef. Z  Coef. Z  

Difference 

Ratio 

TC -0.0075** -105.62  -0.0077** -109.51  -0.028 

count 0.0005** 55.65  0.0002** 30.12  -0.681 

pred_catch 0.0324 0.15  0.8165** 3.58  NS 

hckr 3.1090** 18.82  2.3390** 15.21  -0.248 

spill 0.0809* 2.33  -0.7643** -21.29  NS 

summer 0.6104** 29.1  1.0566** 51.88  0.731 

spring 0.4338** 17.29  0.5447** 21.6  0.256 

fall 0.5403** 23.1  0.9216** 40.18  0.706 

gulf 0.2751** 11.43  0.3589** 14.77  0.304 

size -0.0033 -1.03  0.0839** 25.73   

Model statistics:       

  Log L -50,215.12  -55,597.64   
  Pseudo R2 0.3357  0.3722   
  Cases 18,463  21,628   

Notes: The models included 60 alternatives (10 sites with 6 waves each). Single and 
double asterisks indicate statistical significance at the 0.05 and 0.01 levels, respectively. 
NS indicates that the ratio cannot be calculated since one or both of the coefficients were 
not statistically significant at the 0.05 level.  
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Table 5. Conditional Logit Model of For-hire Fishing Site Choice 

 Baseline (2009)  Event (2010)  

Variable Coef. Z  Coef. Z  

Difference 

Ratio 

TC -0.0032** -77.42  -0.0030** -78.32  0.058 

Count 0.0007** 39.2  0.0005** 47.52  -0.270 

pred_catch -1.1299** -12.44  -0.8246** -13.55  0.270 

hckr 2.0011** 8.87  1.3800** 7.66  -0.310 

spill 0.0404 1.21  -0.2275** -6.63  NS 

summer 0.9391** 33.09  1.0760** 41.07  0.146 

spring 0.6517** 21.1  0.8056** 27.96  0.236 

fall 0.5539** 17.38  0.6427** 21.31  0.160 

gulf 0.5106** 17.31  0.7578** 27.16  0.484 

size -0.0336** -11.15  -0.0227** -8.09  0.325 

Model statistics:       

   Log L -41,738.15  -45,776.29   
   Pseudo R2 0.1386  0.1618   
   Cases 11,835  13,338   

Notes: The models included 60 alternatives (10 sites with 6 waves each). Single and 
double asterisks indicate statistical significance at the 0.05 and 0.01 levels, respectively. 
NS indicates that the ratio cannot be calculated since one or both of the coefficients were 
not statistically significant at the 0.05 level. 
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Table 6. Conditional Logit Model of Private and Rental Boat Fishing Site Choice 

 Baseline (2009)  Event (2010)  

Variable Coef. Z  Coef. Z  

Difference 

ratio 

TC -0.0125** -137.92  -0.0124** -138.59  0.005 

count 0.0003** 65.28  0.0002** 57.92  -0.132 

pred_catch 0.0990 1.29  -0.117 -1.65  NS 

hckr -0.4840** -3.68  0.2434 1.94  NS 

spill 0.3017** 12.24  -0.1077** -4.18  -1.357 

summer 0.4679** 32.06  0.8114** 53.41  0.734 

spring 0.1824** 10.49  0.4093** 22.67  1.245 

fall 0.3184** 18.55  0.7760** 45.21  1.437 

gulf -0.4419** -22.26  -0.1041** -5.51  0.765 

size 0.0280** 11.19  0.0474** 18.01  0.696 

Model statistics:       

   Log L -91,034.67  -90,805.36   

   Pseudo R2 0.3879  0.4061   

   Cases 36,327  37,346    

Notes: The models included 60 alternatives (10 sites with 6 waves each). Single and 
double asterisks indicate statistical significance at the 0.05 and 0.01 levels, respectively. 
NS indicates that the ratio cannot be calculated since one or both of the coefficients were 
not statistically significant at the 0.05 level. 

 
Table 7. Predicted Welfare and Catch to Mitigate Marine Angler Losses due to the 
Deepwater Horizon Oil Spill 

 
Per trip welfare measures for 

spill prevention  
Per trip change in catch for full 

compensation 
 W Wcorrected  Δq Δqcorrected 

Shore $99.64 $110.19  0.3267 0.3613 

For Hire $76.61 $76.61  0.1649 0.1649 

Private $8.66 $32.91  0.4426 1.6820 
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Table 8. Substitution Patterns: Comparison of Difference Ratios Across Fishing 
Modes 
    Difference Ratio 

Variable  Attribute  Shore For-Hire Private/Rental 

TC  Cost  -0.0276 0.0581 0.0049 

count  Site Popularity  -0.6812 -0.2699 -0.1322 

pred_catch  Predicted 
Catch  - 0.2702 - 

hckr  Historic Catch  -0.2477 -0.3104 - 

summer  Season  0.7310 0.1457 0.7341 

spring  Season  0.2557 0.2362 1.2445 

fall  Season  0.7057 0.1603 1.4372 

gulf  Gulf of 
Mexico  0.3044 0.4840 0.7645 

size  Area Size  - 0.3245 0.6964 

 


