The Impact of Mechanical Citrus Harvester Adoption on Florida Orange Juice Growers

JACOB SEARCY*, FRITZ ROKA, and THOMAS SPREEN

Santa Fe College 1
Business Programs Department
3000 NW 83rd Street A-051
Gainesville, FL 32606

University of Florida, IFAS 2
Southwest REC, Immokalee
P.O. Box 110240 IFAS
Gainesville, FL 32611-0240

University of Florida, IFAS 3
Food and Resource Economics Department
1167 McCarty Hall A
P.O. Box 110240 IFAS
Gainesville, FL 32611-0240

Copyright 2012 by Jacob Searcy, Fritz Roka, and Tom Spreen. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies
INTRODUCTION

- Over 10 Billion oranges are hand picked each season in Florida
 - (120 mil boxes * 90 lbs * 1.5 pieces per lb)
- Brazil has a harvest cost advantage
- MH could lower harvest costs and keep Florida citrus competitive in world markets
- But MH adoption may require changes to industry operations

What operational changes may be required for successful MH adoption?

- What economic trade-offs do growers and processors face with adoption?
- With potential savings of ($50 * 120 mil) why has the industry not fully adopted MH?

OBJECTIVES

- Model economic consequences of adoption on the industry, growers, and processors
- Simulate the industry and its incentive structure
- Estimate changes in revenues, costs, and operational trade-offs
- Suggest scenarios that could lead to Pareto improvements

RESULTS

- MH allows for collection of more pound solids and more biologically optimal harvest (Fig. 2)
- All monetary gains accrue to growers awhile processors face higher costs (Table 1)

METHODS

- Biological Model

\[
PS\text{PA}_{\text{crop}} = PPT_{\text{crop}} \times (1-DROP_{\text{crop}}) \times (FTW\text{T}_{\text{crop}}/90) \times DEN_{\text{crop}} \times PS_{\text{crop}}
\]

Estimated 75 functions for pound solid production per acre (PSPA) as a function of pieces per tree (PPT), drop, fruit weight (FTWT), tree density (DEN), and pound solids per box (PS), specific to variety(v), age(a), region(i) over time (t). (Fig. 1)

- Linear Programming Model

Maximize industry returns subject to a large sets of physical capacity constraints
- CIPM1 simulates 2006-07 weekly processing volumes with 5% MH
- CIPM4 simulates the maximum 2006-07 processing volume during a single week with 95% MH

CONCLUSIONS

- Results show the potential for Pareto improvements from MH adoption
- Grower would need to subsidize the processor to make both parties better off
- Potential marketing mechanisms or MH processing fee
- Contracting changes
- Third-party negotiator: Cali. Tomato Growers Association
- A "systems approach" is necessary, adoption is not just a farm management decision

REFERENCES

CONTACT INFORMATION

Jacob Searcy - jake.searcy@sfcollege.edu

Copyright 2012 by Jacob Searcy, Fritz Roka, and Tom Spreen. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies.

The Impact of Mechanical Citrus Harvester Adoption on Florida Orange Juice Growers

Jacob Searcy, Fritz Roka, and Tom Spreen

Food and Resource Economics Department, University of Florida