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Abstract 
 

By design, tenders are used when costs are unknown. But if costs are unknown, how can we 

evaluate the tenders, when their evaluation involves measuring their cost-effectiveness? We 

identify three approaches: theoretical, empirical and experimental. We first use experimental 

data to compare the efficiency of each approach, then apply the most efficient one to field data 

from the Scottish fishing vessel decommissioning program. We estimate the potential errors one 

would make in using a less efficient approach. In this case, we demonstrate a novel use of 

controlled lab experiments for interpreting field data and evaluating policy effectiveness.  
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Introduction   
 

Conservation tenders are policy tools typically used by government agencies to buy 

environmental services from private landholders. By now, in 2012, they have acquired a rather 

rich history, with the Conservation Reserve Program in the United States reaching back to 1985 

(Reichelderfer and Boggess, 1988). Other countries that have made significant use of them 

include Australia, the United Kingdom and Germany, with, recently, some developing countries 

also entering the fray, such as Indonesia and Malawi (Jack et al., 2009; Jack, 2011). It seems 

natural, therefore, that they should be submitted to some sort of evaluation, to see whether their 

use achieves the desired goals and whether, should they do so, other policy instruments might 

not do better.  

Surprisingly, the art – or perhaps the science – of auction evaluation in this context is not 

well developed. In 2003, Stoneham et al. produced an evaluation of the BushTender program in 

south-eastern Australia that led to some controversy in academic circles. They asserted that this 

program had been seven times more efficient than an equivalent fixed price scheme where all 

landholders would get paid the same price per unit of environmental service. Such a statement 

was based on a specific method, or lack thereof, for evaluating the performance of this program. 

As this paper will show, this issue of auction evaluation is not trivial but several approaches to 

solving the problem are available.  

Auction evaluation is a non-trivial problem only for auctions based on the buy-as-you-bid 

principle, or first-price auctions. This is because, as shown for example by Cox et al. (1982; 



 3 

1984), this auction format does not provide incentives for bidders to bid their true costs, at least 

to the extent these costs are known to them; instead, in procurement settings, where bidders are 

sellers rather than buyers, they tend to bid higher. Such is not the case for so-called second-price 

auctions, where, typically, all successful bidders are paid the same price, set by the bid of the 

first rejected bidder (Vickrey, 1961). This auction format does provide the incentives for bidders 

to bid their true costs. As a result, the present analysis applies only to those settings where first-

price auctions are involved. In the context of conservation tenders, this has to date nearly always 

been the case.  

In addition, the problem addressed here concerns ex-post evaluations, that is, one wishes to 

evaluate an auction that has already been held; it does not apply to the ex-ante problem where 

one wishes to know whether to go ahead or not with an auction. The key difference between the 

two approaches lies in the fact that in the first case, one can use the bids that were submitted, 

whereas in the second case such bids are not forthcoming.  

In this paper, we will describe, test, evaluate and compare three different approaches to the 

ex-post, first-price auction evaluation problem, then apply the one which obtains the best test 

results to the evaluation of the Scottish fishing vessel decommissioning auctions carried out in 

2001 and 2003. Accordingly, the next section of the paper describes then tests and evaluates 

each of the three approaches; following that, the best performing method is used to evaluate two 

fishing vessel decommissioning auctions carried out in Scotland in 2001 and 2003. A final 

section concludes.  

 

 

Methods  
 

In this section we shall define then test and evaluate three different methods relevant to the 

ex-post, first-price auction evaluation problem. The three methods are theoretical, empirical and 

experimental. The latter two are innovations. The empirical approach, which is still work in 

progress, was proposed only a couple of years ago, and the experimental approach is, to our 

knowledge, presented for the first time. Only the theoretical approach is not new.  

To date, only methods based on theoretical models have been used for auction evaluation in 

this context. Rosse (1970) seems to have been the first to have devised estimation procedures to 

recover cost functions from data on market-clearing prices and quantities. He was followed by 

such analysts as Porter (1983), Bresnahan (1987), Berry et al. (1995), and Goldberg (1995). 

More recently, Wolak (2002) recovers bidder costs from electricity auctions, Cantillon and 

Pesendorfer (2005: Chapter 22, section 5) from auctioning bus routes in London, and 

Krasnokutskaya and Seim (2008) from highway procurement auctions. All follow essentially the 

same principle and a similar procedure. The principle is that all cost estimates combine an 

assumed functional form for the aggregate demand of the products under consideration, and the 

assumed model of competition among individuals or firms. The procedure typically involves 

four steps: 1) choice of the game and model describing the auction data; 2) computation of 

optimal bids assuming rational behaviour based on maximising expected profits, followed by an 

estimation of the equilibrium distribution of bids; 3) computation of the probabilities of winning; 

4) estimation of bidder costs. This approach typically leads to an econometric exercise, which 

explains why so many of the early papers were published in Econometrica. Fundamentally, the 

theoretical approach involves deducing bidder costs assuming bidders bid optimally and 

maximise their expected benefits. The approach is theoretical as there is no guarantee that real 

bidders actually behave in this way, e.g. perfect rationality.  

However, in the special case of conservation tenders, a purpose-built model was proposed 

in 1997 by Latacz-Lohmann and Van der Hamsvoort, which, although following the same 

rationale, is specifically suited to this context.  

This section first presents and describes the three approaches, then proceeds to test each 

one using data from controlled lab experiments.  
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Section 1 : Defining the three evaluation methods  

 

Theoretical method – using optimal bids  

 

Latacz-Lohmann and Van der Hamsvoort (1997), hereafter LH, were the first to propose a 

theoretical model for sealed-bid, discriminatory-price, budget-constrained procurement auctions, 

or tenders, applied to conservation programs. Their model differs from the target-constrained 

model in that it is a best-response rather than a Nash equilibrium model. It introduces an external 

parameter , which represents the bid cap, or highest bid acceptable to the tendering agency. 

Bidders to not know the bid cap, so they form expectations about , around which a distribution 

can be assumed. In the LH model, it was assumed for any individual bidder i to be uniform 

between a lower and upper bound, [i, i ]. Bidders will not put in bids higher than   given that 

this would contradict their expectations. The resulting model of optimal bidding behaviour, 

assuming risk-neutral bidders, was shown to have the following form:  

),
2

max(
*

i

i
i

c
b 


  (1) 

where the optimal bid bi
*
 is predicted to be both greater than the lowest estimate of the bid cap 

(i) and a function of participation costs, ci. However, optimal bids will not reveal bidder costs 

perfectly given that they also depend on the (highest) bid cap expectation, i . It is well known 

from auction theory that sealed-bid first-price, pay-as-you-bid auction mechanisms involve an 

optimal degree of bid shading and therefore provide a built-in rent for bidders. By solving the 

model for ci, one can express costs as a function of bids and expected bid caps (we drop the 

subscript i for simplicity):  

 if  )(
2

1
c    then  b

* 
=     in which case c cannot be defined  (2a) 

if  )(
2

1
c    then  b

* 
= )(

2

1
c        (2b) 

 

in which case  c = 2b
*
 –           (3) 

 

Empirical method – using bids from the field 

 

In the absence of data including information on bidders’ costs or, as in the LH model, on bid 

cap expectations, an approach based on theoretically optimal bids may not be practical to 

implement. One way to circumvent this difficulty is to adopt a direct approach based on a 

statistical analysis of the empirical bids generated in the field, plus some necessary assumptions. 

This is the approach adopted by White and Burton (2010), hereafter WB. They start with the 

assumption that a bid can be considered as the sum of the bidder’s costs plus an element of rent 

(recall the bid shading property of first-price or discriminatory-price auctions):  

bi = ci + ri           (5a) 

They then estimate the bid function together with a random iid residual term:  

bi = 0 + i ci + ui          (5b) 

where 0 is the constant term, i is the cost coefficient and ui is the iid residual.  

BW then consider the algebraic deviations of each bid relative to the estimated bid and make the 

following assumption: that any deviation larger than the one with the largest negative value (that 

is, the smallest absolute residual) represents a rent. By implication, the largest negative value is 

taken as the benchmark for the minimum rent, which is set equal to zero:  

 }{minˆ
i

i
ii uur            (6) 
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where ir̂  is the estimated rent and }{min i
i

u is the largest value of the residual below the fitted 

curve. Costs can then be deduced as  

ci = bi  ir̂  .          (7) 

 

Experimental method – using bids generated in the lab 

 

The idea here is to design experiments that are isomorphic to the mechanism that generated 

the field data. In this case, one needs to design an auction that shares the same key 

characteristics as the field auction. The choice of these characteristics depends on what 

parameter one wishes to extrapolate. If, as is the case here, we believe that bidders across 

isomorphic settings will, on average, show the same bidding behaviour and, in particular, the 

same degree of bid shading, then the experiment must make sure it controls for all the 

parameters likely to influence bidders’ bid shading. One parameter that is not easy to control for 

is the degree of bidder risk aversion. However, if one is careful to take a measurement before the 

auction, one should be able to adjust for this parameter, provided one knows something about 

the average risk aversion of the population in the field.  

In this case, the key controls were the degree of competition intensity (the budget relative 

to the number of bidders) and the expected selection ratio: although unknown beforehand in a 

budget-constrained auction, it is possible to calibrate a lab experiment to obtain a fairly good ex-

ante approximation of the selection ratio to reproduce that of the field auction, in this case two-

thirds of bidders. Another important parameter is the distribution of costs, both in terms of its 

range and in terms of its shape, uniformly distributed (linear function) or otherwise. If the 

experiments are run once the bids are in from the field, one can choose the cost distribution to 

reflect the bid distribution. Experiments have not yet been run to test for the importance of the 

shape of the cost distribution on the degree of bid shading, so we cannot tell for sure how one 

will affect the other.  

The solution chosen for this study was to extrapolate from the experiments the degree of 

bid shading as a function of the level of cost, which, as predicted by first-price auction theory, 

shows that bid shading is a decreasing function of cost (Cox et al., 1982; 1984).  

Provided all these aspects are controlled for in the experiments, one can formulate the 

working hypothesis that bid shading will be an invariant across isomorphic auction settings. The 

rationale for this hypothesis is that the incentive structures between two isomorphic settings are 

identical; on average, therefore, bidder behaviour should also be identical.  

The logic is as follows, with b, c and r denoting bidders’ bids, costs and rents, respectively, 

and indexes x and f denoting experimental and field data, respectively:  

 rf (bf, cf) = rx (bx, cx) = r         (8a) 

It is of course not possible to know cf nor rf ; we therefore have no direct way of knowing 

whether our hypothesis above is a reasonable one to make or not: that is, we have no direct way 

of controlling for external validity. We have however an indirect approach at our disposal. The 

two experiments K and P were carried out in two different countries with two different 

populations; we can therefore make one hold the role of f while the other takes on the role of x, 

and vice versa. In other words, we can consider, say, the K experiment to represent our field data 

set, for which we assume costs and rents in K, ck and rk, unknown, and use relationship (8a) 

above to compute them using our knowledge of rp(bp, cp), where the indexes k and p take on the 

roles of f and x respectively (f → k and  x → p). Thus, our working assumption now becomes:  

rk (bk, ck) = rp (bp, cp) = r        (8b) 

whence we deduce 

ck = ck (bk, r)           (9) 

and more specifically, since r is generically defined as r = (b – c) / b 

 ck = bk  (1 – r)         (10) 

which holds for each individual bidder. 
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We now have the means to rigorously test whether our working hypothesis is tenable or 

not: we compare the predicted costs ck, estimated using P data, with the known experimental 

costs of the K experiment. The transfer or extrapolation of each bidder-specific ri is 

straightforward if the source and the destination data sets have the same number of bidders; if 

not, as is usually the case, the number of ri must be adapted to meet the number of bidders in the 

destination data set. In addition, because bid shading in discriminatory-price auctions is a 

monotonically decreasing function of individual cost, bidders must be ordered. In this way, the 

bid-shading-to-cost relationship is preserved across the two data sets.  

One can then consider two ways to adapt the number of ri from one data set to the other: 

one is by statistically fitting a function r = r(b), and the other is by mechanically shrinking or 

stretching the number of ri. This will be illustrated further below.  

 

 

Section 2: Testing the three methods on experimental data  

 

Testing the theoretical method 

 

The LH model cannot be directly applied to field data, given that neither costs (ci) nor bid 

cap expectations [i, i ] are observed. The model can however be applied to experimental data 

if the experiments are designed so that both these data are observed. This is what was done with 

the K and the P experiments, where bids, costs and expected bid caps were observed (see 

Appendix I). In addition, the experiments had costs constrained to ci  0, so equation (XXX) 

above becomes: 

 ci = max(0, 2bi
*
 – i )         (4) 

 

Before using the inverse bid function (4) to estimate costs, it was necessary to check, using 

the direct relationships (2a) and (2b), how well the optimal bidding model predicted the 

observed bids. For the K data, the model underestimates real bids by about 7% (Figure 1). This 

can be understood when one takes into account the fact that the model optimizes bids assuming 

bidder risk neutrality. A separate measurement of bidders’ risk aversion prior to the experiments 

proper evaluated their average certainty equivalent ratio at 108%, slightly risk-loving relative to 

a risk-neutral ratio of 100%. The two results are in close correspondence, with the expected sign. 

Similar results were obtained with the P data, except that in that case bidders were measured as 

being risk-averse, with, as one should expect, the estimated bid line situated a little above, rather 

than below, the experimental bid line.  

 

Theoretical model prediction : K data 
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One would expect that, logically, the model should perform equally well in predicting costs as 

in predicting bids; but as the comparison with the K and P data revealed, this is not necessarily the 

case. Whereas the model predicted K bids better than P bids, the reverse was true for costs. This is 

because the max operator in equation (4) does not allow for complete symmetry between the two 

computations.   

The error in cost prediction can be measured by regressing the estimated costs against the 

actual experimental costs (Figure 2). A perfect match would have the regression coefficient equal 

to 1.00 and a constant term equal to 0. In the K experiment the estimated cost coefficient is off by –

13%, while in the P experiment it is off by +6% (both with confidence levels of better than 99%). 

The constant term is less accurate, being off by 19% in terms of the min–max cost range of 260, 

while its estimate is not statistically significant with the P experiment (smaller number of data, n = 

27, compared to n = 44 in K).  

 

Theoretical method : K data

EC = 0.8691*RC + 49.37
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Theoretical method : P data

EC = 1.0592 RC - 14.777

R2 = 0.6514

p<0.001
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Figure 2 

Legend: EC = Estimated Costs 

 RC = Real Costs = experimental data 

 

In terms of the auction’s cost-efficiency (CE), defined as total payment divided by total cost, 

one only includes in the calculation those bidders who were selected. In this case, the error made in 

estimating CE was –26% for the K data and +8% for the P data. These results did not improve 

when potential outliers were excluded. Note that the opposite signs for the K and P data reflect, as 

explained above, the fact that bidders were measured as risk-takers in the first case but risk-averse 

in the latter, the model itself assuming risk neutrality.  

 

Testing the empirical method 

 

To test the accuracy of this procedure, it was applied to the K and P experimental data, the 

result of which is given in Figures 3 and 4. It is clear from the comparison of the two data sets in 

Figure 3 that the efficiency of this method depends on the degree of variability of the bids around 

the fitted curve (in this case, a straight line, since costs were uniformly distributed). Bid variability 

was greater in the P data than in the K data (small triangles around the top-most line); as a result, 

this method yields better results for P than for K. In the K experiment, this method appears to 

perform quite poorly. This method is particularly sensitive to extreme bid values or outliers, a 

property which it shares with data envelopment analysis, a method with which it is closely related.  
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Empirical method - K data
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Empirical method - P data

Bid = 9.4573*Q + 24.265

R2 = 0.9768
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Figure 3  

Legend: Bids (diamonds) 

  Estimated Costs (squares) 

  Real Costs, experimental (triangles)   

  ECU = Experimental Currency Units  

  Q = quantity, in UoS = Units of Service 

 

The error in the linear regression cost coefficient, defined as a deviation from the perfect value 

of 1.00, was 27% and 18% for the K and P data respectively (Figure 4). The constant term was 

off by 24% and 8% in terms of the min–max cost range of 260: that is, 63/260 and 32/260 

respectively. As was the case for the theoretical approach above, costs are better estimated for the P 

than for the K data. As highlighted above, with this statistical approach bids varied more widely 

around the trend in the P data than in the K data, where they were tightly grouped around the fitted 

trend. This is largely an artefact of this approach.  

 

Empirical method - K data

EC = 0.7281 RC + 73.222

R2 = 0.7242

p < 0.001
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Empirical method - P data

EC = 0.8349*RC + 32.091

R2 = 0.8883

p<0.001
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Figure 4   

Legend: EC = Estimated Costs 

  RC = Real Costs = experimental data 

 

In terms of predicting not the costs themselves, but the cost-efficiency of the auction (total 

payments / total cost), we need to take into account the selection ratio, as imposed by the budget 

constraint. Prediction errors on the tail end of bidders, those who are not selected, do not matter in 

this assessment. In this case, the error in cost-effectiveness was 33% for the K experiment and 
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15% for the P experiment. If outliers are removed from the data, the error hardly diminishes for 

the K experiment (29%) but falls by about one half for the P experiment (8%).  

 

 

Testing the experimental transfer method  

 

Neither of the two previous methods – the one using a theoretical model and the one using a 

direct statistical inference – appears to be very accurate, erring by up to 33% in estimating auction 

performance. There is however the third possibility, the experimental transfer method, to which we 

now turn. As highlighted in the methodology section, the transfer can be made using a statistical 

best-fit or a mechanical shrink or stretch.  

 

Best-fit method      

 

Considering the transfer or extrapolation of bid shading ratios r from the source data set P 

to the destination data set K, one first regresses and fits a function using the source data: rp = 

rp(bp). We explored a number of different functional forms, searching for the best fit. It 

consistently turned out to be a (slightly) quadratic function, in this case 

rp = 10
-5

 bp
2
 – 0.0058 bp + 0.8558   (t-value = – 4.65; p < 0.001)  

We then used this function on the destination data set (K) to compute individual bid shading 

ratios rk as a function of own bids bk, that is:  

 rk = 10
-5

 bk
2
 – 0.0058 bk + 0.8558    

from which one can directly compute for each bidder the underlying costs as 

 ck = bk  (1 – rk) 

The reverse prediction was also done, by swapping the roles of the source and destination 

data sets, now predicting from K to P; the best-fit function was also a quadratic:  

 rk = 910
-6

 bk
2
 – 0.0053 bk + 0.9217   (t-value = – 4.91; p < 0.001)  

 

The error in the regression cost coefficient, defined as a deviation from the perfect value of 

1.00, was 15% in the P-to-K prediction and 17% in the K-to-P prediction. The constant term 

in the P-to-K prediction was off by +18% (t-value = 3.65) in terms of the min–max cost range of 

260, while its estimated value was not statistically significant in the K-to-P prediction.  

Prediction of the auction’s performance in terms of cost-efficiency (total payment / total 

cost) was off by –20% in the P-to-K but only by +5% in the K-to-P. With outliers excluded (two 

in both cases), the first estimate improved to –15% but the second deteriorated to +16%. These 

results are all summarised in Table 1 below.  

 

This best-fit transfer method is indifferent to whether the source data set is smaller or larger 

than the destination data set. This is not true of the second method, to which we now turn.  
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Shrink or stretch method  

 

An alternative method to transfer the individual bid-shading ratios (ri) is, after having 

ordered bids as previously, to shrink or stretch the number of such ratios keeping constant the 

lowest and the highest of them; that is, the highest ratio corresponding to the lowest bid, and 

vice versa. In the P-to-K transfer, one needs to stretch the number of ratios from 27 to 44, while 

in the reverse case one needs to shrink their number from 44 to 27. This is quite straightforward, 

provided one keeps intervals between each ratio equally spaced throughout, between the upper 

and lower bound. In the P-to-K prediction, destination costs can then be directly computed using 

the formula  ck = bk  (1 – rp), where the rp are the ratios imported from the P data.  

The error in the regression cost coefficient, defined as a deviation from the perfect value of 

1.00, was 10% in the P-to-K prediction and 2% in the K-to-P prediction (see Table 1). The 

constant term in the P-to-K prediction was off by +12% (t-value = 3.91) in terms of the min–

max cost range of 260, while, as in the best-fit approach, its estimated value was not statistically 

significant in the K-to-P prediction.  

Prediction of the auction’s performance in terms of cost-efficiency (total payment / total 

cost) was off by –9% in the P-to-K and by +5% in the K-to-P. With outliers excluded (two in 

both cases), the first estimate improved to –3% but the second deteriorated (as in the best-fit 

estimate) to +16%. These results are all summarised in Table 1 below.  

 

 

Table 1 

 
Error in cost estimates 

 

Error in Cost-Efficiency** 

(payment / cost) 

Cost estimation method 
Cost coefficient 

(relative to 1) 

Constant term 

(relative to 0) 

Outliers 

included 

Outliers 

excluded 

Theoretical model (L&H)     

K  (n = 44) – 13% (– 5%) *   19% –26% –26% 

P  (n = 27)  6% (+ 8%)   (NS) 8% 17% 

     

Statistical residuals (W&B)     

K  (n = 44) – 27% (– 18%)  28% –33% –29% 

P  (n = 27) – 17% (– 12%)  12% –15% –8% 

     

Experimental transfer - Best fit     

P to K fit  – 15% (–  4%)  18% –20% –15% 

K to P fit – 17% (– 12%)  (NS) 5% 16% 

     

Experimental transfer - Direct     

P to K (stretch) – 10% (+ 2%)    12% –9% –3% 

K to P (shrink)  – 2%  (+ 4%)    (NS) 5% 16% 

 All p < 0.001 All sig. p < 0.05   

*   Numbers between ( ) indicate results that exclude from the data clear outliers.  

** Results show errors in predicting auction's cost-efficiency (total payment / total cost), defined as the difference between CE 

with estimated costs and CE with actual experimental costs. 
 

 Table 1 summarizes and compares the results obtained using the three cost estimation 

methods, for both the underlying cost functions and for the auction’s cost-efficiency 

performance. On both accounts, it appears that the experimental transfer method performs best, 

in the sense that the errors committed are the smallest. This does not imply, of course, that this 

approach should always perform best: more studies of this kind will need to be carried out 

before one can make such a statement. However, given the information currently available, the 

experimental transfer approach appears to be at least as acceptable as any other. We shall 
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therefore choose this method for evaluating the Scottish government’s (SEERAD) fishing vessel 

decommissioning auctions of 2001 and 2003.  

In addition, we can be more specific by noting that the P to K transfer is more appropriate 

for the field data investigation, given that the SEERAD auctions had a greater number of bidders 

than either of the two experiments; therefore, the number of bid-shading ratios needs to be 

‘stretched’ rather than ‘shrunk’, which is what the P(n=27) to K(n=44) transfer does. The 

corresponding results, shown by the shaded values, compare well relatively to the other 

methods.    

 

 

Results: Evaluating the Scottish fishing vessel decommissioning auctions  
 

The previous section aimed at identifying and testing three methods for auction evaluation. 

Given the data at our disposal, it turned out that the direct experimental transfer method 

performed best when put to the test. We shall therefore choose this method to evaluate two real 

auctions that were carried out in Scotland for the purposes of decommissioning fishing vessels 

and reduce pressure on fisheries. These two auctions involved, in 2001 198 bidders and in 2003 

159 bidders. They were not identical in that the first targeted fishing capacity in terms of vessel 

volume and power, whereas the second targeted fishing activity, especially cod landings. Both 

auctions were of the sealed-bid, discriminatory price format, with no announced reserve price. 

Although there might have been some transmission of information from the first to the second, 

the two auctions can be treated as separate, rather than as a repeat. As it happened, the then 

SEERAD agency of the Scottish government was interested in evaluating the performance of 

these auctions, but was unsure of to how to do it. Preliminary analysis by the author suggested 

that the two auctions showed contrasting performance outcomes and this led to a deeper 

analysis, from this paper emerged.  

 

Evaluation using best method   

 

Given the results of the previous section, we apply the direct experimental transfer 

approach to the field data of the two Scottish SEERAD auctions. It must be kept in mind that 

doing so means transferring the bid-shading ratios from the experimental setting to the field 

setting. This in turn assumes that the experimental behaviour of University students can reliably 

be extrapolated to the field behaviour of professional fishermen. Such external validity of 

experimental data is by no means guaranteed; however, we can take it as an acceptable working 

hypothesis given the identity of incentive structures between the two settings mentioned earlier 

and the performance of this approach in the previous section.  

The 71 experimental data points were evenly ‘stretched’ to 198 in the 2001 SEERAD 

auction and to 159 in the 2003 SEERAD auction. Then, knowing the bids and the rent/bid ratios, 

defined as [B–C]/B, one can directly compute the underlying costs. The resulting cost curves are 

given in the two panels of Figure 5. In spite of appearances, the rent/bid ratios imported from the 

experiments were the same in both the 2001 and 2003 auctions: they averaged 31% over all 

bidders.  
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Figure 5 

 

UoS = Units of  Service = a measure of the quantity of fishing capacity put up for decommissioning  

 

As detailed in Schilizzi and Latacz-Lohmann (2007), evaluating an auction’s performance 

requires clear evaluation criteria. These typically include:  

 the ratio of government payments to fishing capacity bought out (cost-effectiveness);  

 the ratio of total bidders’ rents over government payments (rent ratio); and  

 the ratio of government payments to total bidders’ costs, which we can call ‘cost-efficiency’. 

 

These ratios hold only over those bidders who have been selected into the scheme. In 2001, 

129 out of 198 bidders, or 65% were selected (i.e. where awarded a vessel decommissioning 

contract), and in 2003, 69 out of 159 bidders, or 43%, were selected. However, the quantity of 

interest to the Scottish government was not the number of bidders per se, but the quantity of 

fishing capacity that was decommissioned. Measured in these terms, 65% of the capacity on 

offer was bought out in 2001 and 66% in 2003. The discrepancy in 2003 reflects the fact that a 

smaller number but larger-sized boats were decommissioned relative to 2001.  

Evaluating the performance of a field auction also requires, as argued in Schilizzi and 

Latacz-Lohmann (2007), an evaluation benchmark. Basically, one is interested in whether it 

performs better or worse than an alternative policy instrument. Both 2001 and 2003 auctions 

were sealed-bid, discriminatory price, or pay-as-you-bid, auctions. We shall study their 

performance relative to two benchmarks, an equivalent uniform price auction and an equivalent 

fixed price scheme, in terms of their cost-efficiency as defined above.  

A uniform price (UP) auction is the multi-unit extension of the second-price Vickrey 

auction (Vickrey, 1961). It differs from the discriminatory price (DP) auction by the way the 

procurement authority pays the selected bidders. If a bidder is selected in a DP auction, he gets 

paid what he bid for: it is the ‘pay-as-you-bid” rule. In a UP auction, he gets paid the amount bid 

by the first rejected bidder, which, in a procurement auction, corresponds to an amount always 

greater than his own bid. Although bidders in a UP auction get paid more than their bid, it was 

shown by Vickrey that this auction format is incentive-compatible, in that bidders have an 

incentive to bid their true cost. By contrast, in a DP auction, bidders have an incentive to bid 

over and above their true cost (Cox et al., 1982 and 1984). These two incentives act in a 

countervailing way, making the overall performance of each auction format theoretically 

indeterminate and subject to empirical specifics.  

A UP auction equivalent to a DP auction is a UP auction which, in our case, is run with an 

equal budget to that of the DP. (In target-constrained auctions, it would be run with an identical 
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target). The DP auction will perform better than the equivalent UP if, using the cost-

effectiveness criterion, it can buy out with the same budget more fishing capacity than the DP.  

Similarly, a fixed price scheme (FPS) is equivalent to a DP auction if it corresponds to the 

minimum uniform payment rate that would have resulted in the same budgetary expenditure as 

the DP auction. (In a target constrained auction, it would be the minimum uniform payment rate 

that would have been needed to achieve the same outcome, in this case, buy out the same 

quantity of fishing capacity, as the DP auction.) In actual practice, this specific FPS is not 

feasible given that it would require perfect knowledge of individual bidder costs. A more 

realistic implementation of this idea is to use the estimated average cost of eligible participants 

as a base for choosing the fixed payment rate. When using a FPS, the participants are selected 

not through an auction mechanism, but using some automatic selection rule; typically, a random 

first-come, first served rule where, a priori, each participant has an equal probability of 

obtaining a contract.  

 

Evaluating performance using an alternative auction as benchmark 

 

Figure 6 shows the performance of the 2001 and 2003 DP auctions relative to their 

equivalent UP auction, based on our estimates of the cost curves derived in the previous section. 

The result is quite interesting in that the two auctions appear to perform in an opposite manner, 

when using this benchmark. The 2001 DP auction performs better in terms of cost-effectiveness 

than its UP equivalent in that, for the same budget, the former buys out more fishing capacity 

than the latter by an estimated amount of 17% (about 13,000 capacity units bought out instead of 

11,000, given a budget of £25 million). In Figure 6, point C is to the right of point F.  
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UoS = Units of Service (a measure of the fishing capacity offered up by bidders for decommissioning)  

 

Figure 6  

 

The auction also performs better than its equivalent UP in terms of the other two criteria: its 

rent ratio is 37% instead of UP’s 55% and its cost-efficiency (total payment / total cost) is 1.57 

instead of 2.23. By contrast, the 2003 auction performs worse than its equivalent UP, albeit only 

slightly. It buys out 4% less fishing capacity (this time point C is to the left of point F), its rent 

ratio is 56% instead of 52% (8% worse), and its cost-efficiency ratio is 2.27 instead of 2.07 (9% 

worse).  

These results are summarised in column 3 of Tables 2 a and b below.  
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Table 2-a 

Performance 

criteria 

2001 (DP) 

auction 

Equivalent  

2001 UP auction 

Equivalent  

2001 FPS 

% FC decommis. 65% 56% 80% 

£ / unit of FC 1,928 2,253 (+17%) 1,572 (–18%)  

Rent ratio (%) 37% 55% 40% 

Payt/costs ratio 1.57 2.23 1.00*  
FC = Fishing Capacity 

*  by construction 

 

Table 2-b 

Performance 

criteria 

2003 (DP) 

auction 

Equivalent  

2003 UP auction 

Equivalent  

2003 FPS 

% FC decommis. 66% 69% 77% 

£ / unit of FC 2,935 2,815 (–4%) 2,019 (–31%) 

Rent ratio (%) 56% 52% 72% 

Payt/costs ratio 2.27 2.07 1.00* 
FC = Fishing Capacity 

*  by construction 

 

 

Evaluating performance using an alternative policy instrument as benchmark 

 

In comparing the SEERAD auctions to their fixed-price equivalents, one also needs to use 

the estimated cost curves derived previously. The average estimated cost for the 2001 auction 

was £197,701 per vessel (corresponding to £2,025 per unit of fishing capacity or UoS). If all 

eligible vessels were paid this amount, only 50% of their owners would volunteer to give up 

their vessel, which corresponds to a self-selection rate of 50%. The other 50% have costs that 

exceed this average payment. However, this fixed payment, given the acceptance rate of 50%, 

would only use up 33% of the available budget (£8.34m). By assumption, the policy maker has 

decided to spend the whole budget of £25m. To spend it all, an average fixed payment of 

£326,207 per vessel would need to be paid out (£3,341 per unit of fishing capacity), and 82% of 

eligible vessels (163 out of the 198) or 80% of fishing capacity would then be offered up for 

decommissioning.  

With this fixed payment, the overall cost-effectiveness of the scheme would appear as total 

budget outlay per unit decommissioned: £25m for 163 vessels, that is £153,174 per vessel, or 

£1,572 per unit of fishing capacity decommissioned. This compares favourably to the £1,928 of 

the (DP) auction, being 18% cheaper. It also compares favourably in terms of percentage of 

eligible capacity decommissioned: 80% bought out instead of 65% for the auction. In terms of 

the proportion of rent in the total payment, however, it performs slightly worse than the auction: 

40% compared to 37%.   

The 2003 auction’s FPS equivalent leads to a slightly greater percentage of vessels being 

decommissioned, namely 86%, or 77% of fishing capacity, which compares to the auction’s 

66%. The FPS scheme’s overall cost-effectiveness runs at £2,019 per unit of fishing capacity 

decommissioned, which is about 30% cheaper than the auction’s £2,935 per unit. The rent 

component of the government’s layout appears as a much worse 72% compared to the auction’s 

56%.  

These FPS results are summarized in column 4 of Tables 2 a and b above.  

 

These results would not have been possible without the prior estimation of the cost curves 

underlying the auction bids. Without knowledge of these costs in discriminatory-price auctions, 

one would be reduced to making heroic assumptions similar to those made in Stoneham et al. 
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(2003). These authors simply assumed the cost curves were represented by the bid curves. The 

results obtained above demonstrate the extent of the errors that can be introduced by making this 

assumption. 

Speaking of errors, it may be of some interest to see how large an error would be 

committed if a method other than the best one identified above was used instead. This is the 

object of the next section. 

 

Evaluation error when using methods other than the best 

 

Given the nature of the LH model described earlier, one cannot readily apply this approach 

to the SEERAD auctions: neither the underlying costs nor the bid caps are known. This leaves us 

with the empirical method.  

The idea here is to apply the empirical method used by White & Burton (2010) to the two 

SEERAD auctions and compare the results obtained with the experimental transfer method, 

which the testing on experimental data has identified as the best benchmark at our disposal in 

this case. In Figure 7, the resulting cost curves for the two SEERAD auctions are shown as the 

continuous straight line (“empirical estimate”) under the varying bid curve. Just by eye-balling 

Figure 7, it is clear that the error committed is much greater in the 2003 auction than in the 

2001: the overall distance between the experimental and empirical cost curves is much greater in 

the latter. More specifically, in 2001, costs estimated using the empirical method totalled 

£20,693,483 while, using the benchmark method they totalled £15,815,256; an error of +31%. In 

the 2003 auction, the corresponding figures are £28,540,996 and £13,490,492, leading to an 

error of 112% – clearly not a negligible one.   
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Figure 7  

 

This translates into the following errors when evaluating each auction’s performance in 

terms of cost-efficiency (total payment / total cost): in 2001, the CE estimated empirically is 

1.27 while the benchmark estimate is 1.57, reflecting an error of –24%; in 2003, the 

corresponding figures are 1.07 and 2.27, reflecting an error of –53%. With such errors, the 

auction’s evaluation could be very misleading for decision-makers.  

The above results require an obvious caveat: the errors computed are not absolute, but 

relative. They depend on the choice of the benchmark evaluation method, which must be chosen 

as the one having generated the smallest errors when tested with controlled experimental data. In 

this case, it was the direct experimental transfer. But in other types of situations, it could be 

another method that performs best. It is too early now to make any general statement as to which 

method should most likely perform best in general.  
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Conclusions  
 

The purpose of this paper was to compare three possible methods for evaluating the 

performance of conservation tenders and, more generally, for procurement auctions. To be able 

to do this when using mechanisms based on the ‘pay-as-you-bid’ rule, which involve a certain 

degree of bid-shading, knowledge of the underlying bidder costs is essential. Of course, direct 

knowledge is not only infeasible but also, in a sense, necessary; otherwise there would be no 

reason for carrying out an auction. If, however, the auction is based on the uniform-pricing 

principle, no such knowledge of underlying costs is, in principle, needed, since such auctions 

have been shown to be incentive-compatible. Given the necessity of estimating cost curves for 

the pay-as-you-bid auctions, this paper set out to investigate how this was possible and to what 

effect.  

We identified three main methods: a theoretical method based on optimal bids computed 

with an auction model; an empirical method based on a direct use of bid data as generated by a 

field auction; and an experimental method based on transferring bid-shading behaviour from lab 

data to field data, so as to evaluate a field auction. The third approach is quite innovative and 

rests on the principle of an isomorphic experimental setup: the incentive structure in the lab must 

be identical to that in the field for average lab behaviour to be extrapolated to field behaviour. 

Even so, because the set of real or perceived constraints may differ, such external validity is by 

no means guaranteed.  

We were mindful of this limitation when comparing the performance of each of the three 

methods. We submitted each one to a test using controlled lab data and, in particular, used 

different experiments in different countries for testing, to some extent, the method’s external 

validity. In the present case, the experimental method based on a direct transfer of bid-shading 

ratios performed best when tested with different experimental data. It was therefore chosen to 

estimate the costs of two Scottish fishing vessel decommissioning auctions.  

We were able to estimate their underlying cost curves and evaluate each auction’s 

performance. In addition, we investigated how large an error would be made if another, less 

performing method was used. If the empirical method had been used, the error in auction 

performance exceeded 50%, signalling the potential for seriously misleading evaluations. 

Obvious policy consequences follow.  

To sum, this paper has tried to highlight the importance of three aspects of auction 

performance evaluation and comparison:  

 the use of a reliable method for estimating bidder costs 

 the use of a reliable strategy for evaluating and comparing cost-estimation methods 

 the notion of an isomorphic experimental setup  

 a strategy for evaluating, to some extent, the external validity of experimental data  

The problem investigated in this paper is one of evaluation ex-post: one wishes to evaluate 

the performance of an auction that has already taken place and for which the bids are already in. 

The purpose may be to find out whether an alternative policy instrument might have yielded 

better outcomes. A radically different approach is needed if the aim is to evaluate the 

performance of an auction ex-ante, before it has been held, for example to decide whether to go 

ahead and run it or not. This is the topic of a forthcoming paper.  
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