A Heuristic Optimization Model for Vegetable Production and Marketing Decisions

Carl R. Dillon and Michael Vassalos
Department of Agricultural Economics
403 C.E. Barnhart Building
University of Kentucky
Lexington, KY 40546-0276

cdillon@uky.edu and vassalosmichael@uky.edu


Copyright 2012 by Carl Dillon and Michael Vassalos. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
A Heuristic Optimization Model for Vegetable Production and Marketing Decisions
Carl R. Dillon and Michael Vassalos
Department of Agricultural Economics, University of Kentucky

INTRODUCTION

- People often use heuristics, or experience-based methods, to make decisions
- Farm managers face the paradox of needing simple decision-making tools while facing inherently complex problems
- The purpose of this study is to provide an innovative research method combining the power of optimization with the practicality of heuristics
- One form of heuristics is a “rule-of-thumb” approach wherein a manager takes different course of actions depending on some criteria or trigger information
- Rather than solve for a strategy to be followed every year, this study will solve for two optimal strategies: one for years above and one below an optimal trigger

METHODS

- A mixed integer programming model is formulated with an endogenous trigger variable as well as logical binary variables
- Production and marketing decision variables above and below the trigger are included
- Standard technical constraints as well as Boolean conditional constraints are reflected
- A five acre Kentucky tomato, bell pepper and sweet corn producer with 38 years simulated yield data serves as the empirical example
- A random half of the years are used in optimization (referred to as sample) and the remaining half is for out-of-sample evaluation
- A “perfect” heuristics model is optimized for comparison- no specific trigger criteria is considered thereby allowing any “above” and “below” years

OBJECTIVES

- Formulate and briefly describe a mathematical programming model which determines an optimal “rule-of-thumb”
- Demonstrate the use of this model with an empirical example of Kentucky vegetable production and marketing
- Determine the best trigger criteria (e.g., rainfall), optimal trigger level and optimal decisions above and below the trigger level

E-mail: cdillon@uky.edu or vassalosmichael@uky.edu

RESULTS AND DISCUSSION

- Heuristics on the tomatoes selected under the full model made little difference
- Bell pepper results presented herein illustrate potential more than sweet corn
- Using the annual precipitation through April 24th enabled a 2.58% increase in optimal mean net returns or a 3.24% increase for the out-of-sample years
- Greater rain than the 14.5 inch optimal trigger level called for earlier transplanting with less rainfall leading to later transplanting
- As a check, a “perfect” two category heuristics criteria would lead to a 3.60% net returns increase (9.56% out-of-sample)
- The rainfall results achieved 91% of the “perfect” heuristics potential gain (25% for out-of-sample)

Sometimes heuristics will provide a substantive improvement but not always

CONCLUSIONS

- Knowing the upper bound of potential improvement (“perfect” heuristics) is helpful
- There is seemingly endless potential applications and opportunities for this model but mixed integer programming models are notoriously difficult to solve in practice