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Abstract. Quasi–least squares (QLS) is an alternative method for estimating
the correlation parameters within the framework of the generalized estimating
equation (GEE) approach for analyzing correlated cross-sectional and longitudinal
data. This article summarizes the development of QLS that occurred in several
reports and describes its use with the user-written program xtqls in Stata. Also,
it demonstrates the following advantages of QLS: (1) QLS allows some correlation
structures that have not yet been implemented in the framework of GEE, (2) QLS

can be applied as an alternative to GEE if the GEE estimate is infeasible, and (3)
QLS uses the same estimating equation for estimation of β as GEE; as a result,
QLS can involve programs already available for GEE. In particular, xtqls calls
the Stata program xtgee within an iterative approach that alternates between
updating estimates of the correlation parameter α and then using xtgee to solve
the GEE for β at the current estimate of α. The benefit of this approach is that
after xtqls, all the usual postregression estimation commands are readily available
to the user.

Keywords: st0122, xtqls, correlated data, clustered data, longitudinal data, gen-
eralized estimating equations, quasi–least squares

1 Introduction

This article describes the method of quasi–least squares (QLS) and the user-written
program xtqls.

2 Methods

2.1 Setup and notation

We consider the usual setup for generalized estimating equations (GEEs; Liang and Zeger
1986), for which the data comprise correlated measurements collected on each of a group
of independent clusters, or subjects. Consider a longitudinal study in which serial mea-
surements are collected on unrelated subjects at baseline and then at 1 and 3 months

c© 2007 StataCorp LP st0122



148 Improved GEE analysis using xtqls

postbaseline. Or consider a cross-sectional study of rats within litters in which length
and weight are measured once on all rats. In both studies, assuming that measurements
between the clusters (subjects or litters, respectively) are independent but that within
clusters they are correlated is reasonable.

The typical goal of a GEE analysis is to relate the expected value of the outcome
variable with covariates measured on each subject while adjusting for the potential
correlation within the measurements on each cluster. The correlation is considered a
nuisance parameter that is of secondary interest to the relationship between the outcome
and covariates; however, the association can sometimes be of scientific interest. For
example, in a cross-sectional study that relates the birth weight of rats with maternal
feeding during pregnancy, the degree of similarity of weights within litters might be
important to assess.

For notation, we assume that measurements Yi = (yi1, · · · , yini
)′ and associated

covariates x′
ij = (xij1, . . . , xijp) are collected on subject i at times Ti = (ti1, . . . , tini

)′,
for i = 1, . . . ,m. The data are considered balanced and equally spaced when ni = n ∀ i
and |tij − tij−1| = γ ∀ i and j = 2, . . . , ni, respectively. For analysis of a cross-sectional
study, e.g., if one measurement is collected on each of several subjects within multiple
clusters, then Yi = (yi1, . . . , yini

)′ represents the ni measurements that were collected
within cluster i. We also define N =

∑m
i=1 ni.

A key feature of GEEs is that the number of clusters should be relatively large
for assumptions regarding the asymptotic properties of the estimators to be valid. A
popular rule is that the data should contain at least 30 clusters; in general, the required
sample size for a particular study will depend on the degree of correlation and the
study design, as discussed in section 2.4 of Diggle et al. (2002). Usually, the size of the
clusters is small relative to the number of clusters; e.g., a typical longitudinal study of
30 subjects might contain three or four measurements per subject.

GEE analyses specify the relationship between the outcome and covariates measured
on each subject by specifying a generalized linear model for the expected value of the
outcome variable. In particular, the expected value and variance of measurement yij

on subject (or cluster) i are assumed to equal E(yij) = g−1(x′
ijβ) = uij and Var(yij) =

φh(uij), respectively, where φ is a known or unknown scale parameter. We also let
Ui(β) represent the ni × 1 vector of expected values uij on subject i.

Adjustment for the intracluster correlation of measurements is achieved by specify-
ing a working correlation structure that describes the pattern of association between
measurements within each cluster. The working structure for subject (or cluster) i,
denoted by Corr(Yi) = Ri(α), depends on a correlation parameter α that can be scalar-
or vector valued. α must take a value in a particular region (the feasible region) for
the correlation matrix to be positive definite. The covariance matrix of Yi is then given
by Cov(Yi) = φAi

1/2Ri(α)Ai
1/2, where Ai = diag{h(ui1), . . . , h(uini

)} and φ is a scalar
parameter that can be known or unknown.
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Some useful correlation structures for analyzing correlated data include the following:

1. The equicorrelated (exchangeable). All correlations within a cluster are identical,
so that Corr(yij , yik) = α. This structure is often plausible in cross-sectional
analyses, e.g., to describe the pattern of association of blood pressure among family
members at baseline. The feasible region for this structure is (−1/(nm − 1), 1),
where nm represents the maximum value of ni over i = 1, 2, . . . ,m.

2. The first-order autoregressive (AR(1)). The correlation among repeated measure-
ments on a subject will be smaller for measurements that are farther apart in
order of measurement, so that Corr(yij , yik) = αj−k. This structure is often
reasonable in longitudinal trials with equally spaced measurements, e.g., in a de-
pression study in which Hamilton depression scores are measured at baseline and
then once weekly for 6 months. The feasible region for this structure is (−1, 1).
However, a negative value for α may be biologically implausible because allowing
the intrasubject correlations to alternate in sign, e.g., for α2 and α3 to be positive
and negative, respectively, may be unreasonable.

3. The Markov correlation structure. The correlation among repeated measurements
on a subject will be smaller for measurements that are farther apart in timing of
measurement, so that Corr(yij , yik) = α|tij−tik|. This structure generalizes the
AR(1) structure to allow unequal spacing of measurements. The feasible region for
this structure is (−1, 1). However, as for the AR(1) structure, a negative value for
α is typically not biologically plausible.

4. The tridiagonal correlation structure. The correlation among measurements that
are separated by one measurement occasion will be constant, so that Corr(yij , yik)
= α for |j − k| = 1 and is zero otherwise. This structure is not widely applied in
practice, but it is implemented in Stata’s xtgee command and in other standard
software packages that implement GEE. The feasible region for this structure is
(−1/cm, 1/cm), where cm = 2 sin (π[nm − 1]/2[nm + 1]) and nm is the maximum
value of ni over i = 1, 2, . . . ,m; this interval is approximately (−1/2, 1/2) for large
n and contains (−1/2, 1/2) for all n.

5. The unstructured correlation matrix. The within-subject correlations have no as-
sumed pattern, so that Corr(yij , yik) = αjk. This structure is typically reasonable
for studies with a common set of timings of measurements for all subjects. Its
drawback is that the dimension of the correlation parameter will be large for clus-
ters of even moderate size; e.g., a study with clusters of size n = 5 will require
estimation of {n × (n − 1)}/2 = 10 correlation parameters.

6. The working independent correlation matrix. Applying the identity matrix is
straightforward because it does not involve estimation of any correlation param-
eters. However, incorrect application of an identity structure can cause loss in
efficiency in estimation of the regression parameter, especially when the true corre-
lations are large; e.g., see Sutradhar and Das (2000) and Wang and Carey (2003).
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2.2 Review of GEE

GEE is widely used because it extends generalized linear models to correlated data; for
a thorough discussion of GEE, see Hardin and Hilbe (2003). In the following, we refer to
GEE as the iterative approach for estimation developed by Liang and Zeger (1986) that
alternates between (1) updating the estimate of the regression parameter β by solving
the GEE for β and (2) updating the estimate of the correlation parameter α. Typically,
moment estimates are used for estimation of α; StataCorp (2005) describes the estimates
that are implemented for GEE in the xtgee command in Stata 9.2 for the following cor-
relation structures: the equicorrelated (exchangeable), AR(1), tridiagonal (first-order
moving average), identity, and unstructured. The Stata estimates differ slightly from
those suggested by Liang and Zeger (1986), as also mentioned in section 2.3. The iden-
tity matrix can also be specified in Stata 9.2, but doing so does not require a special
algorithm, since for this structure α = 0.

The distribution of the GEE estimate of β, β̂GEE, is asymptotically normal. Stata 9.2,
via xtgee and related commands, provides estimates of the model-based and sandwich-

type estimates of the covariance matrix of β̂. The model-based estimate of the covariance
matrix is appropriate when the user is confident that the correlation structure has been
correctly specified. It has the following form:

ĈovM (β̂) = φ̂Wm
−1

where

Wm =

m∑

i=1

X ′
iAi

1/2R−1
i (α̂)Ai

1/2Xi

and

φ̂ =
1

N − p

m∑

i=1

Zi(β̂)′Zi(β̂)

The robust sandwich covariance matrix is typically applied when there is less cer-
tainty regarding the choice of working correlation structure. However, we have found
that robust standard errors are not necessarily larger than their model-based counter-
parts, so that the sandwich covariance matrix is not always the most conservative choice.
The sandwich matrix takes the following form:

ĈovR(β̂) = Wm
−1CmWm

−1

where

Cm =
m∑

i=1

X ′
iAi

1/2R−1
i (α̂)Zi(β̂)Z ′

i(β̂)R−1
i (α̂)Ai

1/2Xi

Stata 9.2 provides estimated standard errors, 95% confidence intervals, and p-values
for the tests βj = 0 that are based on both the model and sandwich covariance matrices
in GEE analyses.
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2.3 Limitations of GEE

GEE is one of the most widely applied and heavily cited statistical methods. For example,
a search (in June 2007) for the seminal paper on GEE, Liang and Zeger (1986), on
the ISI Web of Knowledge web site yielded 4,369 citations. However, GEE, like all
statistical approaches, has some limitations. The first limitation concerns infeasibility
of the moment estimates of α. Crowder (1995) noted that if the working correlation
structure is misspecified, there may be no solution (asymptotically) to a moment-based
estimating equation for α. In practice, this can result in failure to converge in a GEE

analysis. Shults and Chaganty (1998) demonstrated that the Liang and Zeger (1986)–
suggested estimates for the AR(1) structure will often take a value greater than one,
especially for larger values of α. (However, Stata 9.2 implements an algorithm by
Newton (1988) for the AR(1) structure which, judging from the experience of these
authors, has no problem with infeasibility [estimates α̂ > 1].) In section 4.2, we consider
an obesity study in renal transplant patients for which we demonstrate that the GEE

estimate of α is infeasible for the tridiagonal structure, so that the estimated correlation
matrix is not positive definite.

Another limitation of GEE is that relatively few correlation structures exist in the
major statistical software packages that use GEE. For example, the Markov correla-
tion structure is a relatively simple and useful structure that is not yet available for
GEE (Shults and Chaganty 1998). Stata 9.2 currently implements only five correlation
structures for GEE, in addition to the identity structure and a user-specified struc-
ture that is treated as fixed in the analysis. Although a simple structure is often
reasonable to describe the expected pattern of associations, expanding GEE analyses
to incorporate more complex structures can be helpful, e.g., when the association is
of scientific interest or when a more complex structure is plausible for a particular
study design. See Shults and Morrow (2002); Shults, Whitt, and Kumanyika (2004);
and Shults, Mazurick, and Landis (2006) for discussion of studies that benefited from
analysis with more complex correlation structures than are typically implemented for
GEE.

2.4 Overview of QLS

QLS is a two-stage approach in the framework of GEE that was described for balanced
data (stage one) in Chaganty (1997), unbalanced data (stage one) in Shults (1996)
and Shults and Chaganty (1998), and for unbalanced data (stage two) in Chaganty and
Shults (1999). See Sun, Shults, and Leonard (2006) for more details about the QLS

approach and for a comparison with other methods.

GEE uses an iterative approach for estimation that alternates between updating β̂
by solving the GEE for β and updating α̂ with a consistent estimate for α. QLS is a two-
stage computational approach within this framework that updates α̂ in stage one with
an estimate that minimizes an objective function, the generalized error sum of squares
(Chaganty and Shults 1999). In stage one, QLS alternates until convergence between
updating the estimates of β and solving the stage-one estimating equation for α:
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∂

∂α

{
m∑

i=1

Z ′
i(β)

{
R−1

i (α)
}

Zi(β)

}
= 0 (1)

where Zi(β) = (zi1, zi2, . . . , zini
)ni×1 is the vector of Pearson residuals on subject i.

The solution α̂ to (1) is not consistent. Stage two of QLS therefore obtains a consis-
tent estimate α̂QLS as the solution to the stage-two estimating equation for α:

m∑

i=1

trace

{
∂R−1

i (δ)

∂δ
Ri(α)

}∣∣∣∣∣
δ=bα

= 0 (2)

Section 3.5 provides solutions to (1) and (2) for several working correlation struc-
tures.

The final QLS estimate β̂QLS of β is then obtained by solving the GEE for β evaluated

at α̂QLS. The asymptotic distribution of β̂QLS is the same as the asymptotic distribution

of the GEE estimate β̂GEE. As a result, we demonstrate in section 4 that testing and
construction of confidence intervals for β with QLS is easily accomplished with xtgee in
Stata 9.2, which uses GEE.

2.5 How QLS expands GEE

In this article, we demonstrate that QLS can be used to expand GEE. First, in section 4
we demonstrate that QLS can be used when GEE fails to yield a feasible estimate of α.
QLS might therefore be considered an alternative approach if α̂ is infeasible or if the
GEE iterative estimation procedure fails to converge.

Next, in section 4 we demonstrate that QLS can apply a useful and relatively simple
structure (the Markov) that has not yet been implemented in the framework of GEE.
We thus show that QLS can expand application of GEE by allowing consideration of
patterns of association that are more complex than those currently available for GEE

but that are biologically plausible or reasonable for a particular study design.

However, failure of GEE to converge or infeasibility of α̂ may be a sign that some
model assumptions are wrong. For example, Prentice (1988) noted that α̂ must satisfy
additional constraints to be feasible in analyses of binary data. Shults, Sun, and Am-
sterdam (2006) demonstrated that infeasibility of α̂ for binary outcomes can be likely
when the AR(1) structure has been misspecified as equicorrelated and α is large. Failure
to converge, or infeasibility of α̂, should therefore prompt careful examination of the
choice of working structure.
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3 The xtqls command

3.1 Syntax

xtqls has the following syntax, which is similar to the xtgee syntax:

xtqls depvar
[
indepvars

] [
if

] [
in

] [
weight

]
, i(vari) t(vart) f(family)

c(correlation) vce(vcetype)

where depvar is the dependent variable, indepvars are the covariates, and options are
the required options that we describe in section 3.3.

3.2 Description

xtqls provides QLS estimates of the regression and correlation parameter. QLS is a
method in the framework of GEE, so that xtqls might be considered whenever GEE

is appropriate and especially if GEE fails to converge, or if a correlation structure not
available for GEE can be implemented in QLS. QLS allows the equicorrelated, AR(1),
Markov, and tridiagonal correlation structures.

Using an unstructured matrix is possible with QLS, but the algorithm is complex
(Chaganty and Shults 1999). For an unstructured matrix, we therefore recommend
xtgee in Stata. The QLS and GEE procedures are also identical for the identity matrix,
so that use of xtgee is recommended for an identity structure.

Future updates of xtqls are planned to allow more structures with QLS.

3.3 Options

The options for xtqls (all required) are as follows:

i(vari) specifies the ID variable for subjects or clusters.

t(vart) specifies the variable for timings of observations.

f(family) specifies the distribution of depvar. family is one of the following:

gau Gaussian

bin Bernoulli/binomial

poi Poisson

c(correlation) specifies that the correlation structure be used. correlation is one of the
following:
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AR 1 AR(1)

sta 1 tridiagonal

exc equicorrelated

Markov Markov

vce(vcetype) specifies the type of covariance structure for estimation of β̂. vcetype is
one of the following:

model model-based covariance structure

robust sandwich-type robust sandwich covariance matrix

jack obtains jackknife standard errors

boot obtains bootstrapped standard errors

3.4 Relationship to xtgee

xtqls both uses and is similar to xtgee. In particular, the syntax is as similar to
that of xtgee as possible. For example, the family names and names of the correlation
structures (when they are available in xtgee) are identical to the names that are used
in xtgee.

However, there are some differences between xtqls and xtgee: (1) Unlike xtgee,
which allows more flexibility in choice of link and variance functions, xtqls uses the
canonical link function and corresponding variance function that is appropriate when Yi

is distributed according to an exponential family. For continuous (Gaussian) yij , xtqls
applies the identity link function g−1(γ) = γ and variance function h(γ) = 1. For binary
(Bernoulli) yij , xtqls applies the logistic link function g−1(γ) = exp(γ)/{1 + exp(γ)}
and variance function h(γ) = γ(1 − γ). For count (Poisson) yij , xtqls applies the
exponential link g−1(γ) = exp(γ) and identity variance function h(γ) = γ. (2) Unlike
xtgee, which requires the force option for the AR(1) or tridiagonal structures when the
timings are unequally spaced, xtqls does not require this option for unequal timings.
Rather, xtqls treats the observations as equally spaced when these two structures are
specified. (3) Not all options that are available for xtgee are available for xtqls. We
expect future versions of xtqls to be more similar to xtgee than this initial version. (4)
For the tridiagonal, equicorrelated, and tridiagonal structures, xtqls can be noticeably
slower than xtgee.

3.5 Methods and formulas

The xtqls algorithm for estimation of the correlation and regression parameters

xtqls uses following algorithm to estimate β and α.

1. Obtain a starting value for β̂ by assuming that α = 0 and then fitting a GEE model
by using xtgee in Stata, with the option corr(independent), which indicates
applying an identity working correlation structure.
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2. Alternate between the following steps until convergence in the estimates of β:

a. Obtain updated values of the Pearson residuals at the current estimates of β
and of α.

b. Update the estimate of α by obtaining the solution to the stage-one estimate
(1) for α.

c. Construct the estimated working correlation structure R(α̂) that corresponds
to the updated estimate of α. For structures other than Markov, the matrix
R(α̂) will be constructed for the maximum value of ni. For example, in a
study in which the maximum number of observations per subject is 4 and the
working correlation structure is AR(1), R(α̂) will be a 4 × 4 AR(1) structure
evaluated at α̂. For the Markov structure, the dimension of R(α̂) will equal
the number of distinct values of the timing variable. For example, in a study
in which some subjects are measured at times (1, 2, 4) and all other subjects
are measured at times (1, 3, 9), the dimension of R(α̂) will be 5 × 5.

d. Update the estimate of β by using xtgee, with a correlation structure that
is treated as fixed and equal to R(α̂).

3. After convergence in stage one, update the estimate of α by obtaining the solution
to the stage-two estimate (2) for α.

4. Construct the estimated working correlation structure R(α̂) that corresponds to
the stage-two estimate of α.

5. Obtain the final estimate of β by using the xtgee command, with a correlation
structure that is treated as fixed and equal to R(α̂).

This algorithm uses xtgee to update β̂. As we demonstrate in section 4, all the
usual postestimation commands in Stata are available after xtqls. This algorithm was
described in a presentation by the first author at the Stata 2004 Users Group meet-
ing in Boston, which is available at http://repec.org/nasug2004/Shults Stata 2004.ppt.
Hardin and Hilbe (2003, 73–77) demonstrate a similar algorithm, but with a moment
estimate for α, for a correlation structure that is currently unsupported for GEE.

Stage-one and stage-two estimates of α

xtqls gives solutions to the stage-one (1) and stage-two (2) estimating equations for
several working correlation structures. For estimating equations that do not have an
explicit solution, xtqls uses bisection to obtain a solution in the feasible region for α.
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For the AR(1) structure and for unbalanced data, Shults and Chaganty (1998) proved
that the feasible stage-one estimate α̂ can be expressed as

α̂QONE =

m∑
i=1

ni∑
j=2

(z2
ij + z2

ij−1) −

√
m∑

i=1

ni∑
j=2

(z2
ij + z2

ij−1)
m∑

i=1

ni∑
j=2

(z2
ij − z2

ij−1)

2
m∑

i=1

ni∑
j=2

zijzij−1

whereas the stage-two estimate α̂QLS−AR1 (Chaganty and Shults 1999) is given by

α̂QLS−AR1 =
2α̂QONE

1 + α̂2
QONE

For the Markov structure and unbalanced data, Shults (1996) obtained the QLS

stage-one estimating equation for α:

m∑

i=1

ni∑

j=2

eijα
eij

{
α2eij zijzi,j−1 − αeij

(
z2
ij + z2

i,j−1

)
+ zijzi,j−1

}

(1 − α2eij )2
= 0

where eij = |tij − ti,j−1|. xtqls requires that eij be ≥1 ∀ i and j.

The stage-two estimating equation for the Markov structure (Chaganty and Shults
1999) is given by

m∑

i=1

ni∑

j=2

2eijδ
2eij−1 − αeijeij

(
δeij−1 + δ3eij−1

)

(1 − δ2eij )2

∣∣∣∣∣∣
δ=bα

= 0

For the equicorrelated structure and for unbalanced data, Shults (1996) proved that
there will be a unique feasible solution to the following stage-one estimating equation
for α:

∑

i:ni>1

Z ′
i Zi −

∑

i:ni>1

1 + α2(ni − 1)

{1 + α(ni − 1)}
2 {Z ′

i(β) ei}
2 = 0

where Ini
is the identity matrix and ei is an ni × 1 column vector of ones. Shults and

Morrow (2002, C.3) obtained the stage-two estimate α̂QLS−EQC:

∑

i:ni>1

ni (ni − 1) α̂ {α̂ (ni − 2) + 2}

{1 + α̂(ni − 1)}
2

/ ∑

i:ni>1

ni (ni − 1)
{
1 + α̂2(ni − 1)

}

{1 + α̂(ni − 1)}
2

For the tridiagonal structure and unbalanced data, Shults (1996) proved that there
will always be a feasible solution to the stage-one estimating equation for α. xtqls

obtains solutions to the stage-one and -two estimating (1) and (2) for the tridiagonal
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structure by first constructing the tridiagonal matrix Ri(α̂) and then using the Stata
function syminv() to obtain R−1

i (α̂). Next, to evaluate

∂R−1
i (δ)

∂δ

∣∣∣∣
δ=bα

xtqls uses the following expression:

∂R−1
i (δ)

∂δ

∣∣∣∣
δ=bα

= −R−1
i (α̂)

∂Ri(δ)

∂δ

∣∣∣∣
δ=bα

R−1
i (α̂)

where {∂Ri(δ)}∂δ is an ni×ni matrix with ones on the off-diagonal and zero elsewhere;
i.e., the (j, k)th element of {∂Ri(δ)}∂δ is 1 if |j − k| = 1 and is 0 otherwise.

3.6 Saved results

The saved results for xtqls are the same as those for xtgee in Stata. For example,
typing xtcorr will display the estimated correlation matrix.

4 Examples

Here we demonstrate xtqls in Stata.

4.1 Data and variables

We will use the dataset random small.dta, which is available at
http://www.cceb.upenn.edu/∼sratclif/QLSproject.html. These data are from a study
of obesity in children after renal transplant that was conducted at the Children’s Hos-
pital of Philadelphia. To facilitate sharing of these data for demonstrating xtqls, we
dropped 10% of the observations before saving the dataset random small.dta. (We
did so by generating the variable random with the uniform command, sorting on the
variable random, and then dropping all observations corresponding to random ≤ 0.1.)

(Continued on next page)
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. use random_small

. describe

Contains data from random_small.dta
obs: 531
vars: 5 20 Aug 2006 09:56
size: 12,744 (99.9% of memory free)

storage display value
variable name type format label variable label

id float %9.0g subject id
month float %9.0g month of measurement
bmiz float %9.0g BMI z-score
basebmiz float %9.0g BMI z-score at baseline
obese float %9.0g 1 if subject is obese/ 0 if not

obese

Sorted by: id month

For our examples, we will regress body mass index (BMI) z-score and obesity status
(yes–no) on baseline BMI z-score and on month of measurement. We will demonstrate
the robust sandwich–based covariance matrix and the model-based covariance matrix.

4.2 Example with infeasible GEE moment estimate

If we regress BMI on time and baseline BMI, then the feasible region (set of values on
which α is positive definite) for the tridiagonal structure is (−0.51764, 0.51764). We first
use this structure with Stata’s xtgee command, using the sandwich-based covariance
matrix:

. xtgee bmiz base month, i(id) t(month) f(gau) vce(robust) c(sta 1) force

Iteration 1: tolerance = .0290889
Iteration 2: tolerance = .00021742
Iteration 3: tolerance = 1.180e-06
Iteration 4: tolerance = 6.366e-09

GEE population-averaged model Number of obs = 531
Group and time vars: id month Number of groups = 100
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.3
Correlation: stationary(1) max = 11

Wald chi2(2) = 104.78
Scale parameter: .6754737 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)

Semi-robust
bmiz Coef. Std. Err. z P>|z| [95% Conf. Interval]

basebmiz .6350395 .0625064 10.16 0.000 .5125293 .7575498
month -.0023181 .0033438 -0.69 0.488 -.0088719 .0042357
_cons .9186753 .0619903 14.82 0.000 .7971766 1.040174

working correlation matrix not positive definite
convergence not achieved
r(430);
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Above, xtgee required the option force because the timing variable month is not
equally spaced on all subjects. (If this option were not supplied, then we would have
received a warning that the observations were not equally spaced, in which case 97
subjects would have been omitted from estimation. Our analysis would then be based
on only three subjects.)

Stata warned us that the estimated correlation matrix is not positive definite. We
can see that this is indeed the case when we display the estimated correlation matrix:

. xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.8262 1.0000
r3 0.0000 0.8262 1.0000
r4 0.0000 0.0000 0.8262 1.0000
r5 0.0000 0.0000 0.0000 0.8262 1.0000
r6 0.0000 0.0000 0.0000 0.0000 0.8262 1.0000
r7 0.0000 0.0000 0.0000 0.0000 0.0000 0.8262 1.0000
r8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8262 1.0000
r9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8262 1.0000

r10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8262
r11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c10 c11
r10 1.0000
r11 0.8262 1.0000

The estimate α̂GEE = 0.8262, which per the Stata warning is outside the feasible
region (−0.51764, 0.51764) for the tridiagonal structure.

Next we will use the tridiagonal structure with xtqls, using the sandwich-based
covariance matrix. Doing so does not require the option force; xtqls will treat the
timings as equally spaced for the tridiagonal and AR(1) structures. (This example will
take considerably longer to run than did xtgee for the tridiagonal structure.)

. xtqls bmiz basebmi month, i(id) t(month) f(gau) vce(robust) c(sta 1)

Iteration 1: tolerance = .09658071
Iteration 2: tolerance = 0

GEE population-averaged model Number of obs = 531
Group and time vars: id __00000S Number of groups = 100
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.3
Correlation: fixed (specified) max = 11

Wald chi2(2) = 94.09
Scale parameter: .8811255 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)

Semi-robust
bmiz Coef. Std. Err. z P>|z| [95% Conf. Interval]

basebmiz .6224297 .0738585 8.43 0.000 .4776697 .7671897
month .0178934 .0036415 4.91 0.000 .0107561 .0250306
_cons .7849147 .0760118 10.33 0.000 .6359344 .933895
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xtqls uses xtgee for a fixed correlation matrix. Therefore, all the usual postregres-
sion commands are available after xtqls. For example, if we use xtcorr to provide
the estimated correlation matrix, we see that α̂QLS = 0.5176, so that the estimated
correlation parameter is within (but just barely) the feasible region for α.

. xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.5176 1.0000
r3 0.0000 0.5176 1.0000
r4 0.0000 0.0000 0.5176 1.0000
r5 0.0000 0.0000 0.0000 0.5176 1.0000
r6 0.0000 0.0000 0.0000 0.0000 0.5176 1.0000
r7 0.0000 0.0000 0.0000 0.0000 0.0000 0.5176 1.0000
r8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5176 1.0000
r9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5176 1.0000

r10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5176
r11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c10 c11
r10 1.0000
r11 0.5176 1.0000

For other structures, we observed that the variable month was significant only for the
tridiagonal structure and QLS. However, as discussed in Shults, Sun, and Amsterdam
(2006), infeasibility of α̂GEE or α̂QLS might indicate that the correlation structure has
not been correctly specified. Given that the tridiagonal structure is not biologically
plausible for this analysis, and that α̂GEE was infeasible for GEE, we would therefore be
more inclined to accept the results of an analysis based on a more biologically plausible
structure, such as the Markov. We demonstrate the Markov structure in the next
section.

4.3 The Markov structure

Now let us examine the spacing of measurements in this study. First, create a variable
called lag that represents the spacing of measurements with respect to time:

. qui sort id month

. qui by id: gen lag = month - month[_n-1] if _n>1

Next, if we tabulate the variable lag, we see that the spacing between measurements
varies between 2 and 36 months.



J. Shults, S. J. Ratcliffe, and M. Leonard 161

. tab lag

lag Freq. Percent Cum.

2 81 18.79 18.79
3 77 17.87 36.66
5 6 1.39 38.05
6 76 17.63 55.68
9 11 2.55 58.24
11 2 0.46 58.70
12 160 37.12 95.82
18 4 0.93 96.75
24 12 2.78 99.54
36 2 0.46 100.00

Total 431 100.00

The Markov structure is appropriate for this analysis, because this structure accounts
for the variability of spacing of measurements. We next use the Markov structure with
xtqls. Here we show the model-based covariance matrix that is appropriate under the
assumption that the correlation matrix has been correctly specified:

. xtqls bmiz basebmi month, i(id) t(month) f(gau) vce(model) c(Markov)

Iteration 1: tolerance = .08135458
Iteration 2: tolerance = 0

GEE population-averaged model Number of obs = 531
Group and time vars: id month Number of groups = 100
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.3
Correlation: fixed (specified) max = 11

Wald chi2(2) = 179.83
Scale parameter: .6887826 Prob > chi2 = 0.0000

bmiz Coef. Std. Err. z P>|z| [95% Conf. Interval]

basebmiz .6438863 .0483796 13.31 0.000 .549064 .7387087
month .0008804 .002362 0.37 0.709 -.003749 .0055099
_cons .8149975 .080812 10.09 0.000 .6566088 .9733861

(Continued on next page)
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Next we display the estimated correlation matrix:

. xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.9177 1.0000
r3 0.8069 0.8792 1.0000
r4 0.6237 0.6796 0.7730 1.0000
r5 0.3727 0.4061 0.4619 0.5975 1.0000
r6 0.2227 0.2426 0.2760 0.3570 0.5975 1.0000
r7 0.1330 0.1450 0.1649 0.2133 0.3570 0.5975 1.0000
r8 0.0795 0.0866 0.0985 0.1275 0.2133 0.3570 0.5975 1.0000
r9 0.0475 0.0518 0.0589 0.0762 0.1275 0.2133 0.3570 0.5975 1.0000

r10 0.0284 0.0309 0.0352 0.0455 0.0762 0.1275 0.2133 0.3570 0.5975
r11 0.0170 0.0185 0.0210 0.0272 0.0455 0.0762 0.1275 0.2133 0.3570

c10 c11
r10 1.0000
r11 0.5975 1.0000

The within-subject correlations are high for this analysis.

4.4 AR(1) and equicorrelated structure with QLS

Let us next consider the outcome of obesity (1 = obese; 0 = not obese) and use the AR(1)

and equicorrelated correlation structures with xtqls, using the model-based covariance
matrix.

. xtqls obese basebmi month, i(id) t(month) f(bin 1) vce(model) c(AR 1)

Iteration 1: tolerance = .09449318
Iteration 2: tolerance = .0025892
Iteration 3: tolerance = .00016702
Iteration 4: tolerance = .00001117
Iteration 5: tolerance = 7.837e-07

GEE population-averaged model Number of obs = 531
Group and time vars: id __00000S Number of groups = 100
Link: logit Obs per group: min = 2
Family: binomial avg = 5.3
Correlation: fixed (specified) max = 11

Wald chi2(2) = 35.66
Scale parameter: 1 Prob > chi2 = 0.0000

obese Coef. Std. Err. z P>|z| [95% Conf. Interval]

basebmiz 1.260941 .2115425 5.96 0.000 .8463256 1.675557
month .0015922 .0067496 0.24 0.814 -.0116368 .0148212
_cons -1.401252 .2658318 -5.27 0.000 -1.922272 -.8802308
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The estimated correlation matrix for the AR(1) structure is then given by

. xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.6987 1.0000
r3 0.4882 0.6987 1.0000
r4 0.3411 0.4882 0.6987 1.0000
r5 0.2384 0.3411 0.4882 0.6987 1.0000
r6 0.1666 0.2384 0.3411 0.4882 0.6987 1.0000
r7 0.1164 0.1666 0.2384 0.3411 0.4882 0.6987 1.0000
r8 0.0813 0.1164 0.1666 0.2384 0.3411 0.4882 0.6987 1.0000
r9 0.0568 0.0813 0.1164 0.1666 0.2384 0.3411 0.4882 0.6987 1.0000

r10 0.0397 0.0568 0.0813 0.1164 0.1666 0.2384 0.3411 0.4882 0.6987
r11 0.0277 0.0397 0.0568 0.0813 0.1164 0.1666 0.2384 0.3411 0.4882

c10 c11
r10 1.0000
r11 0.6987 1.0000

If we had implemented the AR(1) structure by using xtgee, then 97 subjects would
have been dropped from the analysis because of unequal spacing of measurements. Or we
could have used the option force, which would have treated all observations as equally
spaced. (The AR(1) structure with xtqls will not require the force option because it
will automatically treat the observations as equally spaced for the AR(1) structure.)

Next we will use the equicorrelated correlation structure, when the outcome is obesity
and with the model-based covariance matrix:

. xtqls obese basebmi month, i(id) t(month) f(bin 1) vce(model) c(exc)

Iteration 1: tolerance = .05135684
Iteration 2: tolerance = .03097018
Iteration 3: tolerance = .00177796
Iteration 4: tolerance = .00006787
Iteration 5: tolerance = 8.058e-06
Iteration 6: tolerance = 9.287e-07

GEE population-averaged model Number of obs = 531
Group and time vars: id __00000S Number of groups = 100
Link: logit Obs per group: min = 2
Family: binomial avg = 5.3
Correlation: fixed (specified) max = 11

Wald chi2(2) = 35.38
Scale parameter: 1 Prob > chi2 = 0.0000

obese Coef. Std. Err. z P>|z| [95% Conf. Interval]

basebmiz 1.37291 .2329508 5.89 0.000 .9163352 1.829486
month -.0059594 .0045567 -1.31 0.191 -.0148904 .0029716
_cons -1.334806 .2574099 -5.19 0.000 -1.839321 -.8302924
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Next let us display the estimated correlation matrix.

. xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.5065 1.0000
r3 0.5065 0.5065 1.0000
r4 0.5065 0.5065 0.5065 1.0000
r5 0.5065 0.5065 0.5065 0.5065 1.0000
r6 0.5065 0.5065 0.5065 0.5065 0.5065 1.0000
r7 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 1.0000
r8 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 1.0000
r9 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 1.0000

r10 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065
r11 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065

c10 c11
r10 1.0000
r11 0.5065 1.0000

5 Discussion

We have used QLS with the user-written xtqls command in Stata. This command
allows correlation structures such as the Markov that have not yet been used in the
framework of GEE. QLS may also provide a feasible estimate when the GEE estimate
is infeasible or if GEE fails to converge. xtqls calls xtgee, and therefore all the usual
postregression estimation commands are available after xtqls. Future updates of xtqls
will use more correlation structures, including the banded Toeplitz and other structures
that are appropriate for data with multiple levels of correlation.
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