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Abstract. We describe a general strategy to analyze sequence data and introduce
SQ-Ados, a bundle of Stata programs implementing the proposed strategy. The
programs include several tools for describing and visualizing sequences as well
as a Mata library to perform optimal matching using the Needleman–Wunsch
algorithm. With these programs Stata becomes the first statistical package to
offer a complete set of tools for sequence analysis.

Keywords: st0111, sqclusterdat, sqclustermat, sqdes, sqindexplot, sqom, sqpar-
coord, sqset, sqstatlist, sqstatsum, sqstattab1, sqstattab2, sqstattabsum, sqtab,
sequence analysis, optimal matching, cluster analysis, panel data, longitudinal
data, explorative data analysis, sequence index plot

1 Introduction

Sequence data arise in many scientific fields, such as biology, where DNA sequences con-
stitute the basic foundation of life, and the social sciences, where researchers investigate
life courses, marital histories, and employment profiles. A sequence is defined as an
ordered list of elements, where an element can be a certain status (e.g., employment
or marital status), a physical object (e.g., base pair of DNA, protein, or enzyme), or
an event (e.g., a dance step or bird call). The positions of the elements are fixed and
ordered by elapsed time or by another more or less natural order (see figure 1).

Figure 1: Sample sequence

Sequence data share some of the properties of cross-sectional time-series and survival
data. However, unlike the former, the positions in a sequence refer to a relative, not an
absolute, time point. Moreover, sequences are generally seen as an entity of their own,

c© 2006 StataCorp LP st0111



436 Sequence analysis with Stata

and the interest is in the sequential character of all elements together. Unlike survival
data, they do not involve a hazard or censoring.

Including the sequential information in the research design increases the complexity
of the analysis because the number of possible sequences grows exponentially with the
sequence length. For example, with three elements and a sequence length of 36, one
can form 336 = 1.5×1017 sequences. Dealing with sequence data therefore raises two
questions: how can the sequential character of the data be maintained without reducing
it to single events, and how can the variation in the sequences be optimally reduced.
The strategy proposed here to analyze sequence data involves five steps:

1. description, i.e., tabulation of sequences and calculation of indicators for the char-
acteristics of each sequence;

2. visualization with sequence index plots or parallel-coordinates plots;

3. comparison using distance measures obtained via optimal matching (OM);

4. grouping of “similar sequences”, based on the results of the comparison step using
techniques like cluster analysis or multidimensional scaling; and

5. application by using the grouped sequences as dependent or independent variables
in standard regression models or other confirmatory analyses.

Here we will describe steps 1–4 in more detail. Step 5 is omitted because it involves
only standard statistical techniques such as cross-tabulation and regression models. As
we proceed, we will introduce a bundle of user-written Stata commands for sequence
analysis (“SQ-Ados”) that make Stata the first general statistical package to offer tools
for all steps of sequence analysis.1 Because of space constraints, we cannot describe each
command in detail here. We refer readers to the help files of the respective commands
for a full description of the options. An introduction to the commands can also be found
in help sq, and a software demonstration is provided in help sqdemo.

2 Preliminaries

We will use artificial data on the employment status of 500 graduates over a period of up
to 36 months after leaving high school. The data resemble a cross-sectional time-series
dataset like the British Household Panel Study, http://www.iser.essex.ac.uk/ulsc/bhps/,
or the German Socio-Economic Panel, http://www.diw.de/english/sop/. The listing be-
low shows the positions 1–10 of the respondent with id 43. The sequence starts with the

1. The freeware program TDA (http://www.stat.ruhr-uni-bochum.de/tda.html) performs OM and
calculates many descriptive statistics, but it lacks easily accessible visualization features and
cluster analysis tools. SAS produces sequence index plots with the help of a user-written
program (Scherer 2001) but does not perform OM itself. “Optimize” by Andrew Abbott
(http://home.uchicago.edu/˜aabbott/om.html) performs OM and several graphical displays for some
sequences. Finally, a variety of specialized biological sequencing programs for OM exist that tend to
be optimized for small numbers of long sequences.
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element 3 (i.e., employment), changes to vocational education, and ends with inactivity
at the 10th position.

. use youthemp, clear
(youth sequences: 36 months, wide)

. list st1-st10 if id == 43, nolabel

st1 st2 st3 st4 st5 st6 st7 st8 st9 st10

43. 3 3 3 2 2 2 2 2 5 5

. label list lbstat
lbstat:

1 higher education
2 vocational education
3 employment
4 unemployment
5 inactivity

The example sequence data are in wide form, but before the commands for sequence
analysis can be used, the data need to be in long form and must be sqset. The former
can easily be accomplished with the official Stata command [D] reshape:

. reshape long st, i(id) j(order)
(output omitted )

The sqset command serves a similar function to tsset (see [TS] tsset) and stset
(see [ST] stset) for cross-section time-series and survival time analysis, respectively. It
is used to declare the variable that holds the elements of a sequence, the variable that
holds the order of the elements, and the variable that uniquely identifies each sequence.
Its syntax diagram is

sqset elementvar idvar ordervar
[
, clear

[
ltrim | rtrim | trim ] keeplongest

]
where elementvar is the name of the variable that contains the elements, idvar is the
sequence identifier, and ordervar is the variable that defines the order of a sequence.
The standard use of sqset requires no options, which is sufficient for our example here.
The available options can be used if there are incomplete sequences; sqset checks for the
type of incompleteness and suggests the proper option. Often sequences derived from
unbalanced panels contain missing values at the beginning or the end of the sequence.
The option ltrim cuts off the missing values at the beginning by aligning all sequences to
the first position. The option rtrim deletes the missing values at the end of a sequence,
and trim does both. Finally, the option keeplongest is used to keep only the longest
contiguous part of each sequence. Read help sqset carefully and the respective section
in help sq before using keeplongest.

. sqset st id order

element variable: st, 1 to 5
identifier variable: id, 1 to 500
order variable: order, 1 to 36
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3 Description

Some general descriptive properties of sequences should be considered to reduce the
enormous amount of information contained in even a few relatively short sequences.
Such descriptions can be obtained in three ways:

• The sqtab command produces frequency tables of sequences.

• The sqdes command assesses the concentration of the sequences.

• A set of egen functions generates variables containing descriptive information
about each sequence, and a further set of commands describes these e-generated
variables.

3.1 Frequency tables of sequences

The sqtab command displays frequency tables of sequences. Here is the syntax diagram:

sqtab
[
varname

] [
if
] [

in
] [

, ranks(numlist) se so nosort gapinclude

tabulate options
]

Without further options, sqtab produces a frequency table of all sequences in the
dataset, showing as much of the sequence as possible.

. sqtab

Sequence-Pattern Freq. Percent Cum.

444444444444444444444444444444444444 38 7.60 7.60
333333333333333333333333333333333333 28 5.60 13.20
555555555555555555555555555555555555 18 3.60 16.80
444444444444111111111111111111111111 10 2.00 18.80
555555555555111111111111111111111111 9 1.80 20.60
555111111111111111111111111111111111 7 1.40 22.00
444444444444444444444444555555555555 5 1.00 23.00
551111111111111111111111111111111111 5 1.00 24.00
222222222222222222222222222222222222 4 0.80 24.80
444333333333333333333333333333333333 4 0.80 25.60
444444444444333333333333333333333333 4 0.80 26.40

(output omitted )
555555555555555555555555555553433333 1 0.20 99.80
555555555555555555555555555555444444 1 0.20 100.00

Total 500 100.00

The table shows that the sequence containing only elements designated 4 (unemploy-
ment) is the most frequent sequence in the dataset, followed by a sequence containing
only employment. There are many sequences that are observed only once, which we call
unique sequences.

In general, sqtab with no options produces large tables because there are often many
unique sequences in the data. Therefore, the default order of the resulting table is such
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that the most frequent sequences are at the top. This feature can be turned off by the
nosort option. Also it is possible to restrict the output to the most frequent sequences
by using the ranks() option. The following example uses ranks(1/10) to show only
the 10 most frequent sequences.2

. sqtab, ranks(1/10)

Sequence-Pattern Freq. Percent Cum.

444444444444444444444444444444444444 38 28.79 28.79
333333333333333333333333333333333333 28 21.21 50.00
555555555555555555555555555555555555 18 13.64 63.64
444444444444111111111111111111111111 10 7.58 71.21
555555555555111111111111111111111111 9 6.82 78.03
555111111111111111111111111111111111 7 5.30 83.33
444444444444444444444444555555555555 5 3.79 87.12
551111111111111111111111111111111111 5 3.79 90.91
222222222222222222222222222222222222 4 3.03 93.94
444333333333333333333333333333333333 4 3.03 96.97
444444444444333333333333333333333333 4 3.03 100.00

Total 132 100.00

Further simplified, the sqtab command allows two straightforward definitions of
sequence similarity. The so option treats identically all sequences that have the same
order of elements; i.e., the sequence A-B-B-A would be treated the same as A-B-A-A
because the elements A and B appear in the same order in both sequences (first A, then
B, and then A again). The se option considers sequences identical if they consist of the
same elements, such as the sequences B-A-A-B and A-B-B-A, because both sequences
consist of the elements A and B only. Here are examples of both options:3

. sqtab, ranks(1/10) so

Sequence-Or
der Freq. Percent Cum.

4 38 16.45 16.45
3 28 12.12 28.57
43 28 12.12 40.69
51 28 12.12 52.81
5 18 7.79 60.61
41 17 7.36 67.97

4343 13 5.63 73.59
45 11 4.76 78.35
31 10 4.33 82.68

313 10 4.33 87.01
32 10 4.33 91.34

323 10 4.33 95.67
53 10 4.33 100.00

Total 231 100.00

2. If subsequent sequence patterns have the same frequency as the higher number specified in ranks(),
they are also displayed.

3. An application of the two similarity definitions from political sociology can be found in Kohler
(2002).
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. sqtab, ranks(1/10) se

Sequence-El
ements Freq. Percent Cum.

34 68 17.85 17.85
134 42 11.02 28.87
345 38 9.97 38.85

4 38 9.97 48.82
13 36 9.45 58.27
15 31 8.14 66.40
23 29 7.61 74.02
3 28 7.35 81.36
45 27 7.09 88.45

135 22 5.77 94.23
14 22 5.77 100.00

Total 381 100.00

The gapinclude option is used to include sequences with gaps in the tabulation.
By default, all SQ-Ados exclude sequences with gaps, although this is required only for
the OM algorithm and otherwise can be overridden with the gapinclude option. Other
ways of dealing with broken sequences are described in help sq.

Finally, if an optional variable name is specified, a cross tabulation of the sequences
with the specified variable will be displayed.

3.2 Concentration of sequences

Tabulating sequences is connected to the concept of concentration. In the tabulation
on page 439, the most frequent sequence is shared by 38 of the 500 respondents. In
the limiting cases when all (no) respondents share the same sequence, there is a high
(low) concentration of sequences. Hence, the concentration is lower when there are more
unique sequences.

The sqdes command provides information about the concentration or diversification
of sequences. Its syntax diagram is

sqdes
[
if
] [

in
] [

, so se graph gapinclude
]

where so and se refer to the similarity concepts described in section 3.1. The graph
option is used to display a graphical representation of the output.
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. sqdes
# of observed sequences: 500

overall # of obs. elements: 5
max sequence length: 36

# of producible sequences: 1.455e+25

Observations Sequences % of observed Cum.

1 309 61.8 61.8
2 22 4.4 66.2
3 5 1 67.2
4 3 .6 67.8
5 2 .4 68.2
7 1 .2 68.4
9 1 .2 68.6

10 1 .2 68.8
18 1 .2 69
28 1 .2 69.2
38 1 .2 69.4

Total 347 69.4

In its header, the output of sqdes shows that we have observed 500 sequences.
Among these 500 sequences, we have observed five different elements and up to 36
positions, implying 536 = 1.455×1025 theoretically producible sequences.

Among the 500 observed sequences there are only 347 different sequences. This
number is shown in the last row of the table in the output of sqdes. In the limit-
ing case when all observed sequences were unique (no concentration), the division of
the number of different sequences by the number of observed sequences would be 1,
whereby this number would converge to zero when all observed sequences were equal
(high concentration). Here this measure of concentration is 69.4%.

The remaining numbers shown in the table are a breakdown of these overall concen-
tration measures. Three hundred nine of the 347 observed sequences are unique (61.8%
of the 500 observed sequences); 22 further sequences (4.4%) are shared by two persons,
etc.

3.3 Sequence-specific descriptions

The SQ-Ados provide ways of describing important characteristics of observed sequences.
Examples of such characteristics include the length of the sequences, the number of el-
ements in each sequence, and the number of status changes in the sequence. Several
such quantities can be stored as a variable in the dataset by using a bundle of egen
functions (see help sqegen). A second bundle of commands are used to describe these
e-generated variables (see help sqstat).

The syntax of the egen functions follows the standard syntax; see [D] egen. The
following functions are available:
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sqelemcount()
[
, element(#) gapinclude

]
generates a variable holding the num-

ber of different elements in each sequence. The gapinclude option generates these
counts for sequences with gaps, treating gaps as just another element.

sqepicount()
[
, element(#) gapinclude

]
separates a sequence into sections of

equal elements (called episodes) and generates a variable holding the number of
episodes for each sequence. The number of episode changes can be calculated by
subtracting one from the number of episodes. The element() option can be used
to restrict the episode count to the specified elements.

sqlength()
[
, element(#) gapinclude

]
generates a variable holding the length of

each observed sequence, and the element() option can be used as above.

sqgapcount() generates a variable holding the number of gap episodes in each sequence.

sqgaplength() generates a variable holding the overall length of gap episodes in each
sequence.

Examples of the egen functions are given below. Unlike common uses of egen,
nothing is required inside the parentheses because the functions use the declarations
provided with sqset:

. egen length = sqlength()

. egen length1 = sqlength(), element(1)

. egen elemnum = sqelemcount()

. egen epinum = sqepicount()

When using the variables generated with the sq-egen functions, keep in mind that
the data are in long form, whereas the new variables refer to the sequences as entities. To
further describe the variables, one can reshape the data back to wide format. However, a
more convenient way to describe the new variables is provided by the sqstat commands,
which summarize, tabulate, and list the variables generated with the sq-egen functions
as if the data were in wide format, and the names of the variables generated by sq-egen
are automatically processed.

The following sqstat commands are available:

sqstatlist
[
varlist

] [
if
] [

in
] [

, ranks(numlist) replace list options
]
, if given

without varlist , lists all variables generated by the sq-egen bundle. With a varlist
only the specified variables are listed. The option ranks(numlist) restricts the listing
to the most frequent sequences, whereas replace keeps the listed data as a dataset
in memory.

sqstatsum
[
varlist

] [
if
] [

in
] [

, summarize options
]
, if given without varlist ,

summarizes all variables generated by the sq-egen bundle. With varlist , only the
specified variables are summarized.

sqstattab1
[
varlist

] [
if
] [

in
] [

, tab1 options
]
, if given without varlist , produces

one-way frequency tables of all variables generated by the sq-egen bundle. With
varlist , only the specified variables are used.
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sqstattab2 varname1

[
varname2

] [
if
] [

in
] [

, tab2 options
]
, if given without

varname2, displays a two-way table of varname1 against all variables generated by
the sq-egen bundle. If specified with varname2, a two-way table of the two specified
variables is displayed.

sqstattabsum varname1

[
varname2

] [
if
] [

in
] [

, format(%fmt) tabsum options
]

summarizes all e-generated variables for categories of the specified variables.

Here are some examples, which assume that the above egen commands have been
executed. A further description of the sqstat commands can be found in help sqstat:

. sqstatsum

Variable Obs Mean Std. Dev. Min Max

length 500 36 0 36 36
length1 500 7.44 11.14481 0 35
elemnum 500 2.244 .8329776 1 5
epinum 500 3.122 1.843343 1 12

We have 500 sequences, each with a length of 36, which also implies that the mean
is 36. Some of the sequences contain the element 1 (education), and there is at least
one sequence where 35 positions contain this element. On average only seven positions
are occupied by education, however. The number of elements in all sequences is at
least 1, and there are some sequences that contain all five possible elements. The
maximum number of episodes is even higher, implying that some sequences oscillate
between elements.

. sqstattab1 elemnum

-> tabulation of elemnum

Number of
different

elements in
sequence Freq. Percent Cum.

1 88 17.60 17.60
2 238 47.60 65.20
3 141 28.20 93.40
4 30 6.00 99.40
5 3 0.60 100.00

Total 500 100.00

Only three sequences consist of all five elements, and 238 of the 500 sequences consist
of only two elements, implying that some elements typically do not appear together,
although more analysis is necessary to verify this claim.

(Continued on next page)
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. sqstattabsum sex

Summary of Length of sequence
sex Mean Std. Dev. Freq.

male 36 0 256
female 36 0 244

Total 36 0 500

Summary of Length of episodes of
element 1

sex Mean Std. Dev. Freq.

male 7 11 256
female 7 11 244

Total 7 11 500

Summary of Number of different
elements in sequence

sex Mean Std. Dev. Freq.

male 2 1 256
female 2 1 244

Total 2 1 500

Summary of Number of episodes
sex Mean Std. Dev. Freq.

male 3 2 256
female 3 2 244

Total 3 2 500

Here the output reveals that the sequences do not vary with sex.

4 Visualization

A graphical representation is advisable in the usual case where the sequences are com-
plex. An often-used technique to visualize sequence data is the so-called sequence in-
dex plot (Scherer 2001; Kogan 2003; Brüderl and Scherer 2004; Brzinsky-Fay 2006).
Parallel-coordinates plots are an alternative that is used less often (Kohler 2002). The
SQ-Ados contain commands for both kinds of plots.

4.1 Sequence index plots

Sequence index plots were proposed by Scherer (2001). The idea is to draw a horizon-
tal line for each sequence, separating the elements with different colors. As shown in
a previous publication (Kohler and Brzinsky-Fay 2005), such plots can be easily pro-
duced with graph twoway hbar or graph twoway hline. The command sqindexplot
implements and further extends the idea by using the following syntax:
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sqindexplot
[
if
] [

in
] [

, ranks(numlist) se so order(varname) by(varname)

color(colorstyle) gapinclude twoway options
]

A simple application of

. sqindexplot

0

100

200

300

400

500

0 10 20 30 40

higher education
vocational education
employment
unemployment
inactivity

Figure 2: Sequence index plot

produces the graph shown in figure 2, which is far from optimal. To fine-tune the graph,
sqindexplot allows all options that are available for graph twoway. When applying
these options, consider several points:

• In general, color versions of sequence index plots are more sensible than black-
and-white versions. The color() option allows fine-tuning of the colors used for
the elements.

• With many observations, there is a tendency to overplot the lines, which has the
effect of overrepresenting elements with higher category values (levels). The effect
depends on the printer and/or screen resolution and can be adjusted by tuning the
aspect ratio (see Cox 2004). It might also be sensible to restrict the graph to the
most frequent sequences with the ranks() option or to plot groups of sequences
separately with standard graphic options, e.g., by(varname, yrescale).

• Sequence index plots depend heavily on the order of the sequences along the
vertical axis. Without further options, a naive algorithm is used to order the
sequences; however, the order() option sorts the sequences according to a user-
defined variable. It is sensible to use the results of the comparison step (section 5)
or the grouping step (section 6) to order the sequences in a sequence index plot.
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Besides the standard form, sqindexplot produces similar plots after applying the
“same order” or “same elements” similarity (section 3.1). The respective options are so
and se.

4.2 Parallel-coordinates plots

Parallel-coordinates plots can easily be produced by Stata’s official graph twoway line
command and are also implemented as statistical graphs (see [XT] xtline). In their
standard form, these plots are especially helpful for cross-sectional time-series data of
continuous variables (see the examples in Diggle, Liang, and Zeger [1994, 12]). With
sequence data, the variables used for the vertical axis are usually categorical (the ele-
ments), and there is normally no relationship between the position in the sequence and
the element at that position. Consequently, standard parallel-coordinates plots become
unreadable for even moderate numbers of sequences, which is why they are seldom used
as a graphical device for sequence data outside teaching. However, they can reveal
valuable information.

To our knowledge, the only application of parallel-coordinates plots for many se-
quences is in Kohler (2002), which sqparcoord builds on. The basic idea of the program
is to add optical effects to highlight frequent sequences and distinguish the lines from
different sequences. Its syntax is

sqparcoord
[
if
] [

in
] [

, ranks(numlist) so offset(#) wlines(#)

gapinclude twoway options
]

where ranks(numlist) and so have the same meaning as for the sequence index plot.4

Figure 3 shows an example using the wlines() option and plots the elements of
sequences along the vertical axis and the position (e.g., time points) along the horizon-
tal axis. The sequences are drawn with a line that connects the elements in position
order. The wlines() option draws thicker lines for frequent sequences, where the num-
ber in parentheses controls the weighting factor. Generally, the thicker the line, the
more frequent the sequence. In our example, the graph shows that the “only unem-
ployment” sequence is the most frequent sequence, followed by “only employment” and
“only inactivity”. The dense (dark) region of the graph shows that changes between
employment and unemployment are frequent over the whole period, whereas changes
between education and other elements decrease slightly over time.

4. “Same elements” similarity is not applicable for parallel-coordinates plots.
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. sqparcoord, ylabel(1(1)5, valuelabel angle(0)) wlines(2)

higher education

vocational education

employment

unemployment

inactivity

0 10 20 30 40
order

Figure 3: Parallel-coordinates plot with wlines()

Figure 4 shows an example of the offset() option, combined with so, ranks(),
and wlines(). The figure was drawn with the following command:

. sqparcoord, so ranks(1/10) offset(.5) wlines(1)
> ylabel(1(1)5, valuelabel angle(0))

higher education

vocational education

employment

unemployment

inactivity

0 .2 .4 .6 .8 1
Order

Figure 4: Parallel-coordinates plot with offset(), ranks(), and wlines()
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With offset(), the lines for each sequence are slightly displaced along the verti-
cal axis, where the number in parentheses controls the amount of displacement. This
arrangement makes following the path of the individual sequences easier, which is espe-
cially useful for plots with just a few sequences. The plot reveals, among other things,
that many of the most frequent sequences end up in employment or higher education.

5 Comparison

In the comparison step, one has to determine how sequences should be compared
and how the difference between two sequences should be measured. For this step,
the so-called Levenshtein distance is used, a measure from information technology
that basically counts the number of operations needed to transform one string into
another (Levenshtein 1966). It has been applied to various fields such as plagia-
rism detection, analysis of DNA sequences (Needleman and Wunsch 1970), ritual dances
(Abbott and Forrest 1986), and the succession of lynchings in southern states of the
United States (Stovel 2001). We informally introduce the idea of the Levenshtein dis-
tance and then go on to explain the functionality of our Stata implementation. A formal
description of the computations necessary to derive the Levenshtein distance is given in
section 7.1. More information can be found in Sankoff and Kruskal (1983), Waterman
(1995), and Rohwer and Pötter (2005, sec. 6.7.2).

5.1 OM

Assume that we observe the following sequences of length 12 for two people, where each
element refers to an employment status in a specific month after an arbitrary starting
point:

Individual 1 ed ed ed em em ue ue em em em em em
Individual 2 ed ed em em em em ue ue ue ue em em

Individual 1 spent 3 months in education, after which he or she was employed for
2 months, then unemployed for another 2 months, and finally landed a job for the last
5 months. Individual 2 was in education for 2 months, then employed for 4 months,
followed by an unemployment period of 4 months, and then employed again. A simple
measure for the distance between these two sequences can be constructed by aligning
both sequences and using a penalty, s, whenever the elements at a specific position
differ:

ed ed ed em em ue ue em em em em em
ed ed em em em em ue ue ue ue em em
0 0 s 0 0 s 0 s s s 0 0

For an overall distance measure, one could multiply s by the number of differences.
Such a measure largely follows the idea of traditional distance measures, such as the
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Euclidean distance, but is not used for sequence analysis. The idea of the penalty is,
however, important, and we will speak of substitution costs for this penalty. One could
use different substitution costs for different combinations of discrepant elements.

The reason why this distance measure is not used in sequence analysis can be illus-
trated using two example sequences. From a visual inspection, one gets the impression
that there is some similarity between the sequences that this distance measure neglects.
Both sequences show the same succession of episodes; i.e., they begin with education,
then have a short employment episode, followed by a short unemployment episode, and
finally are employed again. The sequences differ only in episode duration.

To cope with this kind of order similarity, consider the following alignment of the
two sequences:

ed ed ed em em ue ue em em em em em
ed ed em em em em ue ue ue ue em em
0 0 d 0 0 d d 0 0 d d 0 0 d d d

Here we have shifted some episodes of both sequences to the right; i.e., we have
inserted gaps. Below the alignment we have used 0 if the aligned elements are equal
and d if we have inserted a gap. The distance between the two sequences depends on
the number of insertions and on the value of d, which we will refer to as the indel-cost.5

Now consider the following example, where we have not changed the sequences but
aligned them differently by shifting the end of the second sequence to the left:

ed ed ed em em ue ue em em em em em
ed ed em em em em ue ue ue ue em em
0 0 s 0 0 d 0 0 d d 0 0 d d d

Here we have not inserted further gaps in our alignment. Instead, we have accepted
that the elements at the third position are different, which is reflected by the substitution
cost on the bottom line. We can calculate the overall distance by summing the terms
on the bottom line. The overall distance increases with the number of substitutions and
insertions and with the respective substitution and indel costs.

So far, the distance measure between two sequences is straightforward. We simply
align two sequences in some way, count the number of substitutions and indels, weigh
them with the respective costs, and add them all up, which heuristically defines the
Levenshtein distance.

The problematic aspect of this definition is the alignment of the sequences, because
we are free to insert gaps, delete positions, or accept differences. Thus there is more than
one possible alignment of the two sequences, raising the question of which alignment
to choose. The answer is to choose the alignment with the minimum distance, which

5. Indel is a combination of insertion and deletion. The term is used because one can derive the same
distance measure by deleting certain positions from one sequence instead of inserting gaps.
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is found via the Needleman–Wunsch algorithm (Needleman and Wunsch 1970) in the
SQ-Ados; see section 7.1 for details.

Remember the double role of substitution and indel costs in the application of OM.
On the one hand, they are terms in the definition of the distance measure; on the other
hand, they play a role in the selection of the optimal alignment. It is therefore necessary
to define these costs carefully, keeping two considerations in mind.

The first is that there can be good reason to differentiate substitution costs by ele-
ment combinations. Some researchers refuse to differentiate substitution costs because
of lack of theory (Dijkstra and Taris 1995), but often there are striking reasons for
differentiation. In general, substitution costs should decline as elements become more
similar. Some have proposed that substitution costs should be differentiated empiri-
cally by computing them from the category-to-category transition rates in the sequences
(Rohwer and Pötter 2005, sec. 6.7.2.5), meaning that less frequent transitions would be
more costly than more frequent ones.

The second consideration is the relation between indel and substitution cost. Each
substitution can be seen as a combination of one insertion and one deletion (i.e., an
insertion in one sequence, followed by a deletion in the other). It is therefore sensible
to set substitution costs to double the indel costs. For varying substitution costs, ex-
perience with OM has shown that using indel costs that are more than half the highest
substitution costs prevents the algorithm from using indel operations, except to set off
the difference in sequence length (Macindoe and Abbott 2004, 349). If the position of
an element within a sequence is important, one should define the indel costs to be at
least half as much as the highest substitution cost. On the other hand, if only the
relative position of episodes is important, then one should allow the algorithm to use
indel operations for that purpose. Here it seems appropriate to establish indel costs at
around 1/10 the largest substitution cost (Macindoe and Abbott 2004, 349).

Finally, if sequences of different length are used, the distance measure will be heavily
influenced by the disparity in sequence length because the potential distance between a
short and a long sequence is higher than for those of equal length. To avoid this problem,
the distance measures have to be standardized by dividing the calculated value by the
length of either the sequence with the longer distance or the longest sequence in the
dataset.
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5.2 The sqom command

SQ-Ados contain the command sqom to perform OM. Its syntax diagram is

sqom
[
if
] [

in
] [

, indelcost(#) subcost(# | rawdistance |mat exp |matname)

name(varname) refseqid(spec) full k(#)

standard(# | cut | longer | longest | none) ]
Summary of options

indelcost(#) specifies the cost associated with an insertion or deletion in an align-
ment. The default is indelcost(1).

subcost(# | rawdistance |mat exp |matname) specifies the cost associated with a sub-
stitution in an alignment. The default is two times the value specified as the indel
cost. Substitution costs may be specified as a number, as an implied formula, or
as a full-substitution matrix. Specifying subcost(3) will assign a cost of 3 to any
substitution in an alignment, regardless of how similar the substituted values may
be. subcost(rawdistance) will use the absolute value of the difference between
the two substituted values. A full substitution cost matrix can be created either by
specifying the name of a matrix containing the substitution cost or by typing a valid
matrix. Such a matrix must be a symmetric p×p matrix, where p is the number
of different elements in all sequences. Specifying a full-substitution cost matrix can
increase the running time of the program considerably. The k() option might be
considered for sqom when you are using a full-substitution cost matrix.

name(varname) is used to specify the name of the variable that stores the distances. If
not specified, SQdist will be used and will be overwritten without warning whenever
a sqom command without option full is invoked.

refseqid(spec) is used to select the reference sequence against which all sequences in
the dataset are tested. An existing value of the sequence identifier must be specified
in the parentheses. By default, the most frequent sequence is used.

full is used to perform OM for all sequences in the dataset against all others. The
results of these comparisons are stored in the distance matrix “SQdist”. Specifying
the full option will increase the running time of the program considerably.

k(#) might be used for sqom with full, which is used to speed up the calculation of
the OM algorithm.6 A positive integer between 1 and the number of positions of
the longest sequence can be given in the parentheses. The increase in speed will
be higher with small numbers, but using small numbers can cause the algorithm to
miss the optimal alignment between some sequences, especially if substitution costs
are high relative to indel costs. See section 7.2 for more information on this option.

6. The implementation of the option k() is based partly on the source code of TDA, written by Götz
Rohwer and Ulrich Pötter. TDA is a powerful program for transitory data analysis. It is programmed
in C and distributed as freeware under the terms of the General Public License. It is downloadable
from http://www.stat.ruhr-uni-bochum.de/tda.html.
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standard(# | cut | longer | longest | none) is used to define the standardization of the
resulting distances. With standard(#) all sequences are cut to the length #.
standard(cut) automatically cuts all sequences to the length of the shortest se-
quence in the dataset. standard(longer) divides all distances by the length of the
longer sequence of the respective alignment. standard(longest) divides all dis-
tances by the length of the longest sequence in the dataset, which is the default.
standard(none) is specified if no standardization is needed.

Examples

Without more options, sqom performs OM between each sequence and the most frequent
sequence in the dataset, setting the indel costs to 1 and the substitution costs to 2. It
standardizes the distances by dividing each distance by the length of the longest sequence
in the dataset.

The results of the comparisons are written into the newly generated variable SQdist,
which can be used for further analysis, such as ordering a sequence index plot.

. sqom
Distance Variable saved as _SQdist

However, since many of the sequences are equidistant to the reference sequence,
one may want to combine the variable with a second sorting variable. For figure 5 we
have combined the distance with variables containing the length of each element (see
section 3.3):

. egen length2 = sqlength(), element(2)

. egen length3 = sqlength(), element(3)

. egen length4 = sqlength(), element(4)

. egen length5 = sqlength(), element(5)

. egen plotorder = group(_SQdist length1 length2 length5 length3 length4)

. sqindexplot, order(plotorder)
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Figure 5: Sequence index plot with order from OM

In our next example, we use a full-substitution cost matrix, which was defined be-
forehand with standard matrix commands ([P] matrix define). Since the sequences in
the data contain up to five elements, the subcost matrix needs to be a 5×5 symmetric
matrix, where the first row/column refers to the element with the lowest category value.
The name of the subcost matrix is inserted into the subcost() option. In addition to
specifying a subcost matrix, we have also used the refseq(15) option, meaning that all
sequences are compared against the sequence with id==15 instead of the most frequent
one. The results are written to the new variable, om1.

. matrix sub = 0,2,3,2,4 \
> 2,0,1,1,5 \
> 3,1,0,1,0 \
> 2,1,1,0,2 \
> 4,5,0,2,0

. sqom, subcost(sub) name(om1) refseq(15)
Distance Variable saved as om1

The running time of our second example increased because of the specification of the
subcost matrix but can be reduced by applying the k() option. In our next example,
we use almost the lowest possible value, k(2), which does no harm in this case; i.e., the
results are equal to the exact solution. However, there is no guarantee that this will
always be the case.

. sqom, subcost(sub) name(om2) refseq(15) k(2)
Distance Variable saved as om2

. summarize om1 om2

Variable Obs Mean Std. Dev. Min Max

om1 18000 .7437778 .5602692 0 1.972222
om2 18000 .7437778 .5602692 0 1.972222
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Finally, we show an example with the full option, which requests that every pos-
sible comparison be calculated. With 500 observed sequences in the dataset, 124,750
distances need to be calculated. To reduce this enormous task, sqom performs the calcu-
lations only for the 347 different sequences, which still requires that 60,031 distances be
calculated. Because computation time increases quadratically with the sequence length
and the number of observations, you should expect long running times when specifying
full with large datasets. For the following example, our computer (Pentium 4 with
2.66 GHz, Stata 9.2 for Linux) needed around 1 minute.

. sqom, k(2) full standard(longer)
Perform 60031 Comparisons with Needleman-Wunsch Algorithm
Distance matrix saved as SQdist

Naturally, the results of sqom with full cannot be stored as a variable in the existing
dataset. It is therefore stored in the Stata matrix SQdist, which can be further processed
by standard Stata commands and some specialized SQ-Ados (see section 6). Matrices
are not stored with the dataset. The user-written command mstore by Michael Blasnik
can be used for this task, however.

6 Grouping

On the basis of the distances calculated by OM, similar sequences might be grouped
together. The step is straightforward if OM was performed on a reference sequence,
implying that the generated variable represents the similarity of each sequence with
the reference sequence. The variable can be grouped by applying standard Stata com-
mands, such as xtile or recode, or by using generate with functions like inrange(),
inlist(), autocode(), and recode(). It is even sensible to not group the similarity
variable at all, as in figure 5.

However, when you are performing OM on a sequence-by-sequence basis (i.e., sqom
with the full option), the grouping step is indispensable. Cluster analysis is the most
common technique for this step. A variety of methods for cluster analysis on a dissimi-
larity matrix are available with the official Stata command clustermat (see [MV] clus-
termat). All these methods can be applied to the dissimilarity matrix saved by sqom,
full as well.

There is one trap in applying the clustermat command to the dissimilarity matrix
created by sqom, which stems from the fact that the sequence data and the dissimi-
larity matrix have different dimensions. Besides user-specified if or in qualifiers, the
dimensions of the dissimilarity matrix produced by sqom depend on the sequence con-
centration and on the number of sequences with gaps. The dissimilarity matrix cannot
be attached to the sequence data on a row-by-row basis, which also applies to the results
from the cluster analysis of the dissimilarity matrix. The SQ-Ados therefore contain a
command that helps to link the results of the user-specified clustermat command to
the original sequence data. Its syntax is
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sqclusterdat
[
, return keep(varlist)

]
Without the return option, the command constructs a dataset, which is built from

instructions left over by the last sqom command. The user may specify arbitrary
clustermat commands, as well as applicable cluster postestimation commands in
this dataset. After performing the cluster analysis sqclusterdat, return merges the
cluster results with the original sequence data.7

We now provide an example of the entire procedure, performing two different cluster
analyses and drawing a dendrogram for the cluster analysis by using Ward’s linkage.
Finally, the results of both cluster analyses are attached to the original sequence data.

. sqclusterdat

. clustermat wardslinkage SQdist, name(wards) add

. clustermat singlelinkage SQdist, name(single) add

. cluster tree wards, cutnumber(20)

. sqclusterdat, return

You must use the clustermat option add to allow sqclusterdat, return to merge
the cluster results with the original sequence data. If you accidentally use clustermat’s
clear option, sqclusterdat will revert to the original sequence data without merging
the cluster results.

At the end of the process, the sequence data contain the variables produced by the
cluster analysis. The variables suffixed with hgt can be used in the same fashion as
the distance variable produced by OM on a reference sequence. We use it to produce
yet another version of the sequence index plot (figure 6).

. egen plotorder2 = group(single_hgt length1 length2 length5 length3 length4)
(648 missing values generated)

. sqindexplot, order(plotorder2)

7. A convenience command, sqclustermat, performs the three steps with one command. Cluster
postestimation commands do not work in this case, however.
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Figure 6: Sequence index plot with order from OM with option full

7 Appendix

7.1 The Needleman–Wunsch algorithm

Consider two vectors, R and C, that contain two different sequences of arbitrary length.
Let m denote the length of R and n denote the length of C.

We start by constructing the (m + 1)×(n + 1) matrix L (the Levenshtein matrix)
and initialize each cell with a zero. The cells of the first row and the first column of L
are then filled with

L1,i = L1,i−1 + d; i = 2, . . . ,m

Li,1 = Lj−1,1 + d; j = 2, . . . , n

where d is the indel cost.

After initialization, the value of each cell Li,j (i = 2, . . . ,m and j = 2, . . . , n) is
computed using the following recursive formula:

Li,j = min (Li−1,j−1 + si,j , Li−1,j + d, Li,j−1 + d) (1)

where si,j is the substitution cost between the elements that are found in the sequences
at the positions i and j, respectively. The unstandardized minimal distance between
sequence R and C is in the cell Lm,n.
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The algorithm was developed by Needleman and Wunsch (1970). It is an example
of solving an optimization problem by dynamic programming and is guaranteed to find
the minimal distance between two sequences.

7.2 Speed of sqom

The running-time complexity of the Needleman–Wunsch algorithm is O
(
n2
)
, where

n is the length of the sequences. To compute the distance between all N sequences,
the algorithm has to be executed N×(N − 1)/2 times. Therefore, the running-time
complexity of sqom grows quadratically with both the length of sequences and the
number of sequences being compared. If a substitution cost matrix is defined, the
next factor that influences the running time of sqom is the number of elements (p)
that constitute the sequences. For every comparison of items in two sequences, the
program has to search for the appropriate substitution cost in the substitution cost
matrix, implying the worst case of linear complexity O (p) for every single comparison
of elements. Several precautions were taken to decrease the running time of sqom.

First, comparison to a reference sequence is the default.

Second, the Needleman–Wunsch algorithm is applied only to different sequences.
This precaution implies a little overhead for data screening, which is worthwhile only if
there is a reasonable concentration of sequences in a dataset.

Third, the k() option excludes some alignments from consideration. With k(), only
that part of the Levenshtein matrix where∣∣∣∣ i

m + 1
− j

n + 1

∣∣∣∣ ≤ K
1√
2

m+1
n+1 + n+1

m+1√
(m + 1)2 + (n + 1)2

is calculated. If R and C have the same length, the program will explore the part of the
Levenshtein matrix where the absolute difference between the horizontal and vertical
index is less than or equal to K (|i− j| ≤ K) (Kruskal and Sankoff 1983); i.e., the cells
outside the middle region of the matrix are ignored. Practically, the k() option restricts
the number of subsequent insertions/deletions that are allowed in the alignment of two
sequences. The program will not find the minimum distance if the optimal alignment
takes more than K subsequent insertions/deletions at some point. Thus using option
k() implies no restriction if K is as large as n.

Finally, substitution costs are taken from the substitution cost matrix by using
a so-called hash table, which is implemented as a vector of forward-linked lists. We
solved a collision by chaining: all elements that hash to the same slot are inserted in an
adequately linked list. Although searching for an element in the hash table can take as
long as linear searching, under reasonable conditions the expected complexity is O(1).
Specifically, you should avoid the following features when constructing the set of your
elements to assume constant complexity:
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• The difference between two elements of sequences should not be multiples of 6,709,
which is the principal number that we use for division when creating the hash
function and is the length of the hash table.

• Avoid decimals in the set of sequences. The element is always rounded off by hash-
ing. If a pair of decimal elements has the same integer part, the transformation
is not injective and they will be inserted in the same cell of the hash table.

7.3 Limits

The memory complexity of the Needleman–Wunsch algorithm is O
(
n2
)
. The algo-

rithm is programmed with Mata, so the maximum sequence length is restricted to
2,147,483,647. Given that the human genome has around 3,000,000,000 base pairs, this
limit imposes certain restrictions. There are, however, more severe restrictions imposed
by Stata that apply to all SQ-Ados.

For the SQ-Ados, sequence data are expected to be in long format, which imposes
no restrictions on sequence length. Much of the programming within the SQ-Ados
is, however, done in wide format, so that the maximum sequence length is somewhat
less than the number of variables allowed in the respective flavor of Stata (32,000 in
Stata/SE and 2,047 in Intercooled Stata).

The command sqom with the full option stores its results by coercing a Mata
matrix into a Stata matrix. The maximum dimension of that matrix is 11,000×11,000.
Although one cannot manipulate this matrix with Stata’s matrix commands, one can
still perform a cluster analysis on the matrix regardless of the flavor of Stata and the
setting of matsize.8

Given the limits and speed problems, the optimal matching as it is implemented in
sqom seems capable of working with a moderate number of relatively short sequences. It
has been tested using around 2,000 sequences with a maximum length of 100 positions.
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