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Determining Optimal Levels of Nitrogen

Fertilizer Using Random Parameter Models

Emmanuel Tumusiime, B. Wade Brorsen, Jagadeesh Mosali,

Jim Johnson, James Locke, and Jon T. Biermacher

The parameters of yield response functions can vary by year. Past studies usually assume
yield functions are nonstochastic or ‘‘limited’’ stochastic. In this study, we estimate rye–
ryegrass yield functions in which all parameters are random. The three functional forms
considered are the linear response plateau, the quadratic, and the Spillman-Mitscherlich.
Nonstochastic yield models are rejected in favor of stochastic parameter models. Quadratic
functional forms fit the data poorly. Optimal nitrogen application recommendations are
calculated for the linear response plateau and Spillman-Mitscherlich. The stochastic models
lead to smaller recommended levels of nitrogen, but the economic benefits of using fully
stochastic crop yield functions are small because expected profit functions are relatively flat
for the stochastic yield functions. Stochastic crop yield functions provide a way of incorporating
production, uncertainty into input decisions.

Key Words: cereal rye–ryegrass, Monte Carlo, nitrogen, random parameters, stochastic
plateau

JEL Classifications: Q10, C12, D24

Optimal nitrogen (N) fertilizer recommendations

are often obtained by fitting yield response func-

tions to crop yield data (Babcock, 1992; Cerrato

and Blackmer, 1990; Lanzer and Paris, 1981;

Makowski and Wallach, 2002; Mooney et al.,

2008). Unfortunately, model-based N rate rec-

ommendations are vulnerable to misspecification

of the yield response functions. This misspecifi-

cation can affect the accuracy of optimal N rec-

ommendations, and any errors can reduce the

profit of producers who follow the recommen-

dations and potentially have negative environ-

mental effects if excess N is applied. Of particular

interest here is the possible misspecification of

assuming parameters are nonstochastic when

they are stochastic. In this article, we determine

the N rate recommendations for a winter cereal

rye (S. cereale)–ryegrass (Lolium multiflorum

Lam) forage crop based on yield functions using

three different functional forms in which yield

functions are estimated assuming both stochas-

tic and nonstochastic parameters.

Previous work on crop response to N fertil-

izer has usually used either limiting nutrient re-

sponse functions or polynomial functional forms.

Plateau functions tend to best fit data from field

studies (Grimm, Paris, and Williams, 1987;
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Heady and Pesek, 1954; Lanzer and Paris, 1981).

Past studies have often assumed that the param-

eters of the yield function are nonstochastic or

‘‘limited’’ stochastic (some parameters are con-

sidered stochastic and others are not) and that all

model errors are independent. This often leads

to the estimation of the mean yield function con-

ditional on fertilizer inputs but neglects the pos-

sible interaction between weather events in a

given year with the associated fertilizer response.

Research suggests, however, that parameters of

yield response functions canvary by year (Cerrato

and Blackmer, 1990; Makowski and Wallach,

2002; Tembo et al., 2008). Given that the pa-

rameters of the yield response function can vary

by year, estimating a random parameter model

could give a more realistic model of producers’

profit expectations.

Random parameter models have been sug-

gested by Berck and Helfand (1990), Makowski

and Wallach (2002), Paris (1992), and Tembo

et al. (2008). Berck and Helfand (1990) and Paris

(1992) estimate linear response plateau func-

tional forms in which the intercept and plateau

parameters are random but without random ef-

fects. Tembo et al. add uncorrelated random ef-

fects to the intercept and plateau but not to the

slope. The Tembo et al. approach was success-

fully used to model wheat forage data (Kaitibie

et al., 2003; Taylor et al., 2010) as well as wheat

yield data (Biermacher et al., 2009). We follow

Brorsen and Richter (2011), Makowski and

Wallach (2002), and Roberts et al. (2011) and

treat all of the model parameters as having a ran-

dom effect that varies by year. Makowski and

Wallach (2002) find that it pays to consider all

parameters as stochastic and there is a need

to determine if their findings apply to other

situations.

We consider three crop response functions:

the simple linear response plateau (LRP), the

Spillman-Mitscherlich, and the quadratic; and

we make all parameters of the yield response

functions random. Our random parameter crop

response functions let parameters vary stochas-

tically by year. The data used are annual rye–

ryegrass forage data collected from a long-term

N fertilization experiment in south–central

Oklahoma. We conduct nested likelihood ratio

tests to choose between nonstochastic and

stochastic models for each of these three crop re-

sponse functions (Greene, 2008). Next, we eval-

uate the economic value of using the alternative

models by comparing expected profit. The ulti-

mate goal of this study is to evaluate the economic

importance of using a random parameter model

to make optimal N rate recommendations for

cool-season cereal rye–ryegrass forage producers

in southern Oklahoma.

Determining the Profit Maximizing Level

of Nitrogen Fertilizer

Consider a risk-neutral forage producer whose

objective is to maximize expected net returns

from winter cereal rye–ryegrass forage. The pro-

ducer seeks to maximize expected net return

above N cost:

(1) max
N

E RtjNð Þ 5 pE Øyt
e � rN

s.t. yt 5 F(N), N ³ 0,

where Rt is the producer’s net return at time t, yt

is the forage yield, N is the level of applied N,

r is the price of applied N fertilizer, and p is the

price of forage. Yield expectations are obtained

through the production function F(N). We con-

sider the three functional forms in turn.

Linear Response Plateau

A stochastic linear response plateau function is

specified as

(2)
yit 5 min bð 0 1 sð t 1 b1ÞNit,mp 1 vtÞ

1 ut 1 eit,

whereyit is the forageyield of cereal rye–ryegrass

from the ith plot in year t, Nit is the level of N

fertilizer, mp is mean plateau yield, st is the slope

random effect, vt is the plateau year random ef-

fect, ut is the (intercept) year random effect, and

eit is a random error term that is normally dis-

tributed and independent of the three random

effects. The intercept random effect is added to

the whole equation rather than just to b0 so that

the model of Tembo et al. (2008) is a special case.

The variance parameters ut, st, and vt are corre-

lated and normally distributed. Makowski and

Wallach (2002) use a model in which (b0, b1,

mp) ; N(b, W). Our model is parameterized
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differently but is equivalent to Makowski and

Wallach (2002).

The random effect ut shifts the whole function

up or down, which could be the result of a variety

of weather factors, insects, or disease. The slope

random effect st may be the result of N losses

from leaching, soil or weather characteristics, or

weed pressure during critical growth periods.

The plateau year random effect vt shifts the yield

potential from applying more N, which mostly

varies as a result of rainfall in a given year. For

example, when growing conditions are favor-

able in a given year, the plateau yield increases

as does the amount of N that the plants can use.

When the model is nonstochastic, the random

variables vt and st will be zero, but ut may still be

included.

The function is continuous, but its derivatives

do not exist with respect to either its parameters

or N at the knot point where the response and the

plateau are joined, but the derivatives of expected

yield do exist for the stochastic model. Choosing

the level of N (N*) that maximizes equation (1)

follows the rule from economic theory that the

marginal factor/input cost (MFC) should equal

the marginal expected product value (MVP).

With a nonstochastic linear response plateau

function, equation (2) will exhibit constant posi-

tive marginal product when mp > b0 1 b1N. If

MVP > MFC, then N should be applied until

MVP 5 MFC. Increasing N beyond the level re-

quired to reach mp will generate negative mar-

ginal returns. Therefore, with the nonstochastic

LRP, N* would either be at the level required to

reach the plateau (Np) or zero:

(3) N�5
Np, if VMP > MFC
0, otherwise

�
.

For the stochastic LRP, the random variable

ut in equation (2) enters linearly and therefore it

drops out after taking expectations. Therefore,

the expectation of y becomes

(4)
E ytð Þ

5 E min b0 1 b1 1 stð ÞN,mp 1 vt

� �� �
.

Because st and vt are random and correlated,

the expectation in equation (4) requires integrat-

ing with respect to st and vt, which defines a dou-

ble integral that must be solved numerically:

(5)
E ytð Þ5

ðð
min b0 1 b1 1 stð ÞN, mp 1 vt

� �h i

� u st,vtð Þ@st@vt,

where u (st,vt) is the multivariate normal proba-

bility density function. Tembo et al. (2008) use the

approach developed for Tobit models and obtain

N* by evaluating a univariate normal probability

density function because they do not allow the

slope to be random. Makowski and Wallach

(2002) solve the integral using Monte Carlo

integration. The integration in equation (5) can

also be solved using other numerical approxima-

tion methods such as Gaussian cubature (DeVuyst

and Preckel, 2007). We use Monte Carlo integra-

tion to solve the double integral. The optimal level

of N is obtained by direct nonlinear optimization

(grid search would also work because there is

only one choice variable).

Spillman-Mitscherlich

The Spillman-Mitscherlich yield response func-

tion is an exponential function (Spillman, 1923).

A univariate stochastic form of this function is

(6)
yit 5 a� b 1 stð Þ exp �c 1 vtð ÞNitð Þ

1 ut 1 eit,

where a is the maximum or potential yield ob-

tainable by applying N under the conditions of

the experiment; b is the increase in yield resulting

from applied N; c is the ratio of successive in-

crements in output a to total output y; ut, st, and vt

are correlated random effects; and eit is the in-

dependent error term. When the model is non-

stochastic, the random variables st and vt are zero,

but ut is still included.

Equation (6) shows that as the application rate

of N increases, the yield increases at a decreasing

rate and asymptotically approaches a maximum

as the application rate (theoretically) approaches

infinity. The function does not strictly adhere to

the law of the minimum as in the case of the linear

response plateau. The Spillman-Mitscherlich

yield response function allows for convex rather

than right-angled isoquants associated with the

law of the minimum, but unlike the polyno-

mial functions, it exhibits a plateau. The function

exhibits sufficient flexibility to accommodate

from near-perfect substitution to near zero factor

Tumusiime et al.: Optimal Level of Nitrogen Fertilizer 543



substitution if the data and production process so

suggest (Frank, Beattie, and Embleton, 1990).

The optimal level of N is obtained by sub-

stituting equation (6) into equation (1) and then

solving the optimization problem. For the non-

stochastic Spillman-Mitscherlich yield function,

the optimal level of N (N*) is obtained by solving

the first-order condition for N, which gives

(7) N�5
1

�c
ln

r=p

cb

	 
� �
.

For the stochastic Spillman-Mitscherlich, be-

cause the random variables st and vt do not enter

linearly in equation (6), the expectation of y is

obtained by numerically solving the integral:

(8)
E ytð Þ5

ðð�
a 1 b 1 stð Þ exp �c 1 vtð ÞN

�

u st,vtð Þ@st@vt.

The double integral is solved using Monte Carlo

integration. Monte Carlo approximates equation

(8) with a summation, which is then substituted

into equation (1) and the optimal level of N is

then obtained by nonlinear optimization.

Quadratic Response

A random parameter quadratic response model

is specified as

(9) yit 5 b0 1 b1 1 vtð ÞNit 1 b2 1 stð ÞN2
it 1 ut 1 eit.

where b0 is the intercept parameter whose posi-

tion (value) can be shifted up or down from year

to year by the year random effect ut, b1 is the

linear response coefficient with random effect

parameter vt, b2 is the quadratic parameter whose

value can be shifted up or down by the random

effect st, and eit is the independent error term

assumed to be normally distributed. The random

effects vt, st, and ut are correlated and normally

distributed. When the model is nonstochastic, the

random effects vt and st would be zero, but ut is

still included.

Because equation (9) is continuously twice

differentiable and all the random parameters

enter in equation (9) linearly, equation (1) gives

the same analytical solution for both stochastic

and nonstochastic models. Note that for the

nonstochastic model, the values of, vt, st, and ut

are all zero. Hence, the problem of calculating

N* simplifies to:

(10) N�5 (b
12

r
pÞ 2b2.

.

Model Fit and Selection Criteria

Likelihood ratio tests are used to choose between

stochastic and nonstochastic models (Greene,

2008). The calculated likelihood ratio statistics

have a chi-square distribution under the null hy-

pothesis. To choose between competing func-

tional forms, Davidson and Mackinnon (1981)

suggest using formal nonnested tests such as the

J-test and P-test. These tests, however, cannot be

used here because they can only be used when the

nonoverlapping parameters are associated with

fixed effects.

The literature on nonnested hypothesis tests

provides a variety of criteria to select the model

that best fits the data. When competing nonnested

models are fully parameterized and estimated by

maximum likelihood, a popular criterion is the

adjusted model log-likelihood such as Akaike in-

formation criterion (Akaike, 1974) and Bayesian

information criterion (Schwarz, 1978). However,

these criteria do not take into account whether

the differences in the penalized log-likelihoods

are statistically significant. When observations

are independent and identically distributed, a test

can be done following Vuong (1989). Pollak and

Wales (1991) introduced the Likelihood Domi-

nance Criterion (LDC). The LDC provides

rationale to compare two models based on the

difference in estimated likelihoods with adjust-

ments for differences in the number of parameters

and for a given significance level (Grewal, Lilien,

and Mallapragada, 2006; Pollak and Wales,

1991). The criterion involves a fictitious experi-

ment in which two competing hypotheses are

nested in a composite and the concept of domi-

nance ordering is used to choose among the two.

This criterion is the one we use for testing hy-

potheses to choose between our nonnested models.

Let H1 and H2 be two models (hypotheses)

with n1 and n2 parameters, respectively, and let

L1 and L2 be the log-likelihoods. Let C(v) denote

a critical value of the chi-square distribution with

v degrees of freedom at significance level a.

According to the LDC:

Journal of Agricultural and Applied Economics, November 2011544



1. Select H1 if L2 2 L1 < [C(n2 1 1) 2 C(n1 1

1)]/2.

2. Select H2 if L2 2 L1 > [C(n2 2 n1 1 1) 2

C(1)]/2.

3. Otherwise, model selection is indeterminate.

When the number of parameters is equal, n1 5 n2

(our case), the indeterminate region reduces to

zero and the criterion reduces to a simple com-

parison of estimated maximum likelihood values

(Pollak and Wales, 1991).

Data

Forage yield data are cross-sectional, time-series

from a long-term experiment conducted by the

Agricultural Division of The Samuel Roberts

Noble Foundation, Inc. (1997–2008) at Red

River demonstration and research station near

Burneyville in south–central Oklahoma. The ex-

periment began in 1979 and was aimed at

evaluating the effect of N fertilization rate and

harvest timing on the annual rye–ryegrass forage

production system using a randomized complete

block design. Details of the experimental design

are described in Altom et al. (1996) who ana-

lyzed the data from 1979–1992.

Our data set covers 14 years from Fall 1993 to

Spring 2007. Six treatment levels of N (34–0–0)

were administered: 0, 100, 150, 200, 300, and

400 pounds per acre per year. Treatments were

replicated three times for each level of N. Split

applications were used. Ammonium nitrate was

broadcast and incorporated before planting in the

fall. Spring applications were not incorporated.

Fall fertilization was done between September

24 and October 25. Spring fertilization was done

between February 20 and March 17. Phosphorous

was banded with the seed at a rate of 50 pounds

P2O5/acre every year. Potassium was broadcast

and incorporated before planting at an average

rate of 100 pounds K2O/acre. Lime was applied to

the plots used in the study.

Forage yields were determined by clipping

individual plots that were 12 � 13 feet. Plots

were clipped multiple times to simulate grazing.

Yearly dry matter forage yields were the sum of

all clippings for that year. Average annual rye–

ryegrass yield response to N fertilization is

shown in Figure 1.

Estimation

The models are estimated using the nonlinear

mixed procedure in SAS (SAS Institute Inc.,

2003). The dependent variable is yield, and the

independent variable is N. For the quadratic,

the nonstochastic LRP, and the nonstochastic

Spillman-Mitscherlich yield response functions,

the error term and random effects enter the

equations linearly. In the stochastic LRP and

the stochastic Spillman-Mitscherlich yield re-

sponse functions, the two nonintercept random

effects enter the equations nonlinearly. The ran-

dom effects are estimated as free correlated pa-

rameters, but the error term is independent.

The SAS nonlinear mixed procedure fits

nonlinear mixed models by maximizing the

Figure 1. Ryegrass Yield Response to Applied Nitrogen
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likelihood function integrated over the random

effects. As is common in nonlinear optimization,

convergence can be difficult and computing the

objective function and its derivatives can lead to

arithmetic overflows (SAS Institute Inc., 2003).

The models have no closed form and can only

be approximated numerically. To achieve con-

vergence, three efforts are used: scaling, varying

starting points, and using different optimization

techniques.

Pinheiro and Bates (1995) provide evidence

that of the several different integrated likelihood

approximations methods, adaptive Gaussian

quadrature is one of the best. We use this method

to approximate the likelihood function integrals

and maximize the function by the dual quasi-

Newton optimization algorithm. Other optimi-

zation techniques that enabled convergence are

the Newton-Raphson method with ridging and the

Trust-Region Method (SAS Institute Inc., 2003).

The quadratic and nonstochastic Spillman-

Mitscherlich models converge with less need

of scaling and changing starting point values.

Estimates obtained are then used to determine

the optimal level of N.

For the stochastic linear response plateau

and the stochastic Spillman-Mitscherlich crop

response functions, the estimated parameters are

used in Monte Carlo integration. The random

vector [st, vt] is jointly normal distributed, i.e. [st, vt]

; N (0, W). We use the Cholesky decomposition,

W 5 P9P where P is a lower triangular matrix. Let

Z be a 2 � 1 vector of independent draws, then

PZ ; N (0, W). With sufficient draws, the sample

average of the function being integrated provides

an approximation to the integral (Greene, 2008, pp.

576–83). We use 10,000 draws for our approxi-

mation. To obtain the optimal level of N, we use

the SAS PROC NLP procedure and maximize our

objective function (equation [1]) using Newton-

Raphson with ridging.

Results

Estimated parameters are reported for each of the

crop response functions: the quadratic in Table 1,

the linear response plateau in Table 2, and the

Spillman-Mitscherlich in Table 3. For all models,

the mean parameters and variance estimates are

statistically significant at the 5% level based on

Wald t-tests. Covariance parameters of the sto-

chastic quadratic model are not statistically sig-

nificant at the 5% level. Covariance parameters

of the stochastic Spillman-Mitscherlich and the

covariance between the plateau and the slope in

the stochastic LRP are statistically significant.

Table 1. Rye–Ryegrass Yield (1000 lbs/acre) Response to Nitrogen (100 lbs/acre) Using the
Nonstochastic and Stochastic Quadratic Functional Form

Parameter

Stochastic Quadratic Nonstochastic Quadratic

Estimate SE Estimate SE

Intercept (b0) 5.74 0.54 5.77 1.15

Slope (b1) 1.74 0.44 1.64 0.18

Quadratic term (b2) –0.24 0.10 –0.25 0.04

Variance of intercept random

effect (su
2)

13.46 3.29 19.32 7.08

Variance of error term (se
2) 1.89 0.11 2.43 0.14

Variance of slope random

effect (sv
2)

1.93 0.35

Variance of quadratic term

random effect (ss
2)

0.47 0.20

Covariance s2
u,s2

s

� �
1.62 1.51

Covariance s2
s ,s2

v

� �
–0.004 0.38

Covariance s2
u,s2

v

� �
–0.03 0.06

Optimal level of nitrogen (100 lbs/acre) 1.71 0.12 1.44 0.15

–2 Log-likelihood 2348.6 2433.6

SE, standard error.
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The likelihood ratio (LR) statistic for the sto-

chastic quadratic vs. the nonstochastic quadratic

model is 170; the LR for the stochastic linear

response plateau vs. the nonstochastic linear

response plateau is 269.4; and the LR for the

stochastic Spillman-Mitscherlich vs. the non-

stochastic Spillman-Mitscherlich is 262.8. All

the LR statistics are greater than the critical chi-

square X2
5

� �
value1 at any conventional signif-

icance level. Thus, stochastic models fit our data

better than the alternative nonstochastic models

for each of the three crop response functions.

Based on the Likelihood Dominance Crite-

rion (Pollak and Wales, 1991), we choose the

functional form for the crop response function

that fits our data best. The estimated maximum

likelihood value for the stochastic linear response

plateau is 2295.1. The likelihood value for the

stochastic quadratic is 2348.6, and for the sto-

chastic Spillman-Mitscherlich, it is 2300.0. All

the three stochastic crop response functions have

the same number of parameters (n 5 9). Hy-

pothesis testing on the stochastic crop response

functions according to the Likelihood Dominance

Criterion ranking favors the stochastic linear

response plateau over the stochastic Spillman-

Mitscherlich and the stochastic Spillman-

Mitscherlich over the stochastic quadratic function

form for crop response. From the illustration

in Figure 1, a quadratic functional form may

be considered a poor choice for this data set on

the basis that it assumes symmetry. It indicates

that yield decreases past the peak at the same rate

it increases before the peak. We base our optimal

N application rate recommendations on the sto-

chastic linear response plateau, the best fitting

functional form.

The profit maximizing level of N is evaluated

at 2009 input and output prices. Although N 34–

0–0 ammonium nitrate was used in the experi-

ment, The Samuel Roberts Noble Foundation

Agricultural Division currently recommends us-

ing 46–0–0 urea. The prices of N 34–0–0 and

46–0–0 as reported by input suppliers in south–

central Oklahoma are $0.51/lb of N and $0.41/lb

of N, respectively. We do a sensitivity analysis

by determining N rate recommendations because

N prices vary. The per pound price of forage is

determined as the cost of beef gain per pound

Table 2. Rye–Ryegrass Yield (1000 lbs/acre) Response to Nitrogen Using the Nonstochastic and
Stochastic Linear Response Plateau Functional Form

Parameter

Stochastic Linear

Response Plateau

Nonstochastic Linear

Response Plateau

Estimate SE Estimate SE

Intercept (b0) 5.67 0.29 5.72 1.15

Slope (b1) 1.62 0.31 1.38 0.17

Yield plateau (mp) 8.01 0.12 8.23 1.14

Intercept random effect s2
u

� �
13.96 1.53 19.32 7.08

Variance of error term s2
e

� �
1.85 0.11 2.42 0.14

Plateau random effect s2
v

� �
3.65 0.33

Variance of slope random effect s2
s

� �
0.89 0.16

Covariance s2
us2

s

� �
–1.41 0.74

Covariance s2
us2

v

� �
0.89 0.82

Covariance s2
s s2

v

� �
1.54 0.18

Optimal level of N (100 lbs/acre) 1.44 0.14a 1.82 0.14a

–2 Log-likelihood 2295.10 2429.80

a The standard error (SE) of the optimal nitrogen (N) application rate for the stochastic Linear Response Plateau is obtained by

Monte Carlo methods, whereas the SE of the optimal nitrogen application rate for the nonstochastic Linear Response Plateau is

obtained using the delta rule.

1 Note that there is a potential nuisance parameter
problem with this hypothesis test because imposing
that the two variances are zero also imposes that the
three covariances are zero. We do not explore this issue
because all null hypotheses are rejected even using the
more conservative critical value.
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divided by the pounds of forage required by a

stocker animal to produce a 1-pound gain (Belasco

et al., 2009; Coulibaly, Bernardo, and Horn, 1996;

Kaitibie et al., 2003). Based on the National Re-

search Council (1984) net energy equations used

to estimate livestock requirements, Ishrat, Epplin,

and Krenzer (2003) and Krenzer et al. (1996) show

that 1 pound of beef gain requires 10 pounds (dry

matter) of standing forage. Within the south–

central Great Plains, the cost per pound of gain

has ranged from $0.32/lb since 2005 to $0.55/lb in

2009. Kaitibie et al. (2003) used an average daily

weight gain equation and determined the cost of

beef gain at $0.54/lb. As a result of decreased

prices of corn and fertilizer, this cost declined to

$0.45/lb (which is approximately the mean across

the period). Therefore, at the cost of beef gain per

pound of $0.45, the price per pound of forage is

$0.45/10 5 $0.045. Our optimal N application

rate recommendations are based on N prices of

$0.41/lb and forage sale prices of $0.045/lb.

The estimated optimal N rates and their

standard errors for the models are included in the

respective tables of results. At the assumed pri-

ces, the profit maximizing level of N obtained

with the nonstochastic linear response plateau

function is 182.3 lbs/acre, the level of N required

to reach the plateau. Applied N increases yield at

a rate of 13.8 lbs/acre until the plateau yield level

of 8235.7 lbs/acre. At $0.045 sale price of for-

age, the marginal value product of N is $ 0.62/lb,

which is greater than the $0.41/lb price of N. The

95% confidence interval of the optimal level of

N obtained with the nonstochastic linear re-

sponse plateau is 209.4 lbs/acre to 154.6 lbs/acre.

Maximum profits for the stochastic linear re-

sponse plateau are achieved with a N fertilization

rate of 143.6 lbs/acre. The 95% confidence in-

terval for this estimate is to apply 115.5 lbs/acre

to 171.8 lbs/acre of N. The nonstochastic linear

response plateau gives an optimal level of N that

is 38.7 lbs/acre higher than the stochastic linear

response plateau. Based on the average expected

plateau yield and optimal N obtained with the

stochastic linear response plateau, the marginal

productivity of N is higher with the stochastic

model. On average, N increases forage yield at

a rate of 16.3 lbs/acre compared with 13.8 lbs/

acre for the nonstochastic model. The stochastic

linear response plateau crop response function

leads to diminishing marginal productivity of N

that is supported by data from agronomic experi-

ments (Paris, 1992).

The expected profit function of the non-

stochastic linear response plateau crop response

function is higher than that of the stochastic linear

response plateau (Figure 2A). Figure 2A shows

that the expected profit curve predicted by the

Table 3. Rye–Ryegrass Yield (1000 lbs/acre) Response to Nitrogen Using the Nonstochastic and
Stochastic Spillman-Mitscherlich (S-M) Functional Form

Parameter

Stochastic S-M Nonstochastic S-M

Estimate SE Estimate SE

Maximum (potential) yield (a) 7.91 0.12 8.47 1.15

Response due to nitrogen (b) 3.28 0.38 2.81 0.23

Ratio of successive increments (c) 1.31 0.26 0.89 0.16

Variance of error term s2
e

� �
1.85 0.11 2.42 0.14

Intercept random effect s2
u

� �
19.44 1.10 19.35 7.09

Variance of slope random effect s2
s

� �
5.89 1.45

Plateau random effect s2
v

� �
0.37 0.15

Covariance s2
u,s2

s

� �
8.36 1.16

Covariance s2
u,s2

v

� �
1.67 0.36

Covariance s2
u,s2

v

� �
0.80 0.19

Optimal level of nitrogen (100 lbs/acre) 1.07 0.02a 1.13 0.09a

–2 Log-likelihood 2300.0 2431.4

a The standard error (SE) of the optimal nitrogen application rate for the stochastic Spillman-Mitscherlich is obtained by Monte

Carlo methods, whereas the SE of the optimal nitrogen application rate for the nonstochastic Spillman-Mitscherlich is obtained

using the delta rule.
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nonstochastic linear response plateau increases

linearly as a function of N and decreases sharply

when N exceeds the optimal N level. Because of

the initial linear section, the profit-maximizing N

rate is insensitive to N prices. The nonstochastic

linear response function overestimates yield po-

tential in years when growing conditions are not

good. This explains the large difference between

N recommendations calculated using the sto-

chastic and nonstochastic models. The loss (to

the producer) from using the nonstochastic lin-

ear response plateau to predict optimal N levels

when the stochastic linear response plateau is

the true model is approximately $9.0/acre. This

loss is small because the expected profit func-

tion of the stochastic linear response plateau is

relatively flat. The cost of using a nonstochastic

linear response plateau to determine N recom-

mendations when the stochastic linear response

plateau is the true model increases if the price of

N increased relative to the price of forage.

The profit maximizing level of N obtained

with the nonstochastic Spillman-Mitscherlich

model is 113.5 lbs/acre. The 95% confidence

interval for this estimate is 95.4 lbs/acre to 130.4

lbs/acre of N. The optimal level of N obtained

with a stochastic Spillman-Mitscherlich model

is 107.4 lbs/acre. The 95% confidence interval

for the optimal level of N obtained with the

stochastic Spillman-Mitscherlich is 103 lbs/acre

to 110.6 lbs/acre. The expected profit function

of the nonstochastic Spillman-Mitscherlich is

higher than that with the stochastic Spillman-

Mitscherlich (Figure 2B). The loss from using the

nonstochastic Spillman-Mitscherlich to predict

the optimal level of N when the stochastic

Spillman-Mitscherlich is the true model is ap-

proximately $1.0/acre. The economic benefits

of using fully stochastic models are small be-

cause optimal N rates do not differ greatly be-

tween stochastic and nonstochastic models and

the expected profit functions are relatively flat.

The analysis presented here does not account

for the environmental/social costs of overfertil-

ization as a result of using a nonstochastic crop

response function to determine N rates. Although

not quantified, there are additional costs to over-

estimating crop N needs. For instance, Tumusiime

et al. (2011) has shown that applying N above the

consumptive potential of the growing plant can

increase lime costs. There is a potential social cost

resulting from potential groundwater contamina-

tion from N fertilizer overapplication. Because

the stochastic models recommend lower N levels,

accounting for these additional costs would in-

crease the advantage of the stochastic crop re-

sponse functions.

The profit-maximizing level of N obtained

with a nonstochastic quadratic crop response

model is 144.3 lbs/acre, and the optimal level

of N obtained with a stochastic quadratic model

is 171.4 lbs/acre. We notice from Figure 3 that

fertilizer application recommendations for the

stochastic linear response plateau and the sto-

chastic Spillman-Mitscherlich models can be less

or more than the fertilization rates recommended

with the alternative nonstochastic model,

depending on price ratios for the input and the

output. The use of the stochastic linear response

plateau or Spillman-Mitscherlich function to

Figure 2. A–B, Expected Profit Functions for the Linear Response Plateau (LRP) and the Spillman-

Mitscherlich (S-M) Functional Form

Note: Price of ryegrass 5 $0.0450/lb, price of nitrogen 5 $0.41/lb

Tumusiime et al.: Optimal Level of Nitrogen Fertilizer 549



determine N application recommendations

provides insight as to why some farmers may

apply more or less N than would appear optimal.

Also, the expected profit function is relatively

flat so the optimal level is likely difficult for

farmers to determine. The stochastic quadratic

model consistently estimates higher optimal levels

of N application rates than the alternative non-

stochastic model.

Summary and Conclusions

Models predicting crop yield response to N fer-

tilizer applications are often used to recommend

optimal fertilizer application rates. Past studies

usually assume the parameters of the crop yield

function are nonstochastic or ‘‘limited’’ stochas-

tic and that all model errors are independent.

Given that research suggests that the parameters

of the crop yield functions vary by year, esti-

mating a random parameter yield function could

give a more realistic model of producers’ profit

expectations. In this study, we consider yield

functions in which all parameters are random.

The approach was applied to cereal rye–ryegrass

forage data collected from a long-term N fertil-

ization experiment in south–central Oklahoma to

determine and compare the profitability of N

estimated from stochastic crop yield functions

and the alternative nonstochastic models. The

functional forms considered are the linear re-

sponse plateau, the quadratic, and the Spillman-

Mitscherlich.

Constant parameter models are rejected in

favor of random parameter models. The quadratic

functional form fits the data poorly. The stochastic

linear response plateau model provided the best fit

to the data among the yield functions studied. Our

results support the findings of and Kaitibie et al.

(2003) and Tembo et al. (2008) that the linear

response plateau yield function with stochastic

plateau provides a better fit than a nonstochastic

plateau. The value of using a stochastic linear

response plateau instead of a nonstochastic alter-

native functional form was estimated to be $9/

acre, so the economic benefit is not huge. The

finding by Makowski and Wallach (2002) that it

pays to use a random parameter model to calculate

N application rates is supported, but the loss from

not using random parameter models to determine

the optimal level of N application is small, be-

cause optimal N rates do not differ greatly be-

tween stochastic and nonstochastic models and

the expected profit function is relatively flat.

Another implication of this study regarding

the flatness of the profit function is that it brings

into question the economic feasibility of vari-

able rate application technologies that are being

developed to improve N use efficiency. If forage

producers have a wide margin of error when de-

ciding how much N to apply, the cost of obtaining

a more accurate estimate of N may not exceed

the benefit, because the cost of ’’being roughly

right’’ in the N application rate is not large.

The observation by Cerrato and Blackmer

(1990) and other researchers that the quadratic

Figure 3. Optimal Level of Nitrogen Application Rate at Varying Prices for the Linear Response

Plateau (LRP) and the Spillman-Mitscherlich (S-M) Functional Form

Note: Price of ryegrass is constant at $0.045
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functional form estimates a higher optimal N

application rate than a linear response plateau

functional form is supported for stochastic

models, but not nonstochastic models. The

quadratic functional form implies a yield de-

cline beyond the maximum yield as a result of

excess N fertilization, which is rarely observed

in field studies. Nevertheless, our data do show

an unsustained yield decline at a high N ap-

plication rate. Other studies do find a quadratic

functional form providing a better statistical fit

(Belanger et al., 2000), which means that crop

yield functions with plateau may not dominate

in every situation. In a practical farm extension

context, stochastic production functions provide

a way of incorporating production uncertainty

into input decisions. The methodology developed

to determine N application recommendations is

applicable to other crops as well as other areas.

The methodology is of benefit to producers be-

cause it improves the precision of optimal N re-

commendations under production uncertainty as

well as N use efficiency and farm profitability.

Current recommendations of fertilizing an-

nual cool season cereal rye–ryegrass pastures

from the Samuel Roberts Noble Foundation are

to apply 100–200 lbs/acre. Our estimated optimal

rates are within this range. Based on the estimates

from the stochastic linear response plateau, the

95% confidence interval level is to apply between

115.5 lbs/acre to 171.8 lbs/acre annually.

[Received September 2010; Accepted June 2011.]
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