
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2004)
4, Number 2, pp. 103–112

Cumulative incidence estimation in the

presence of competing risks

Vincenzo Coviello
Department of Prevention
Azienda U.S.L. BA/1, Italy

coviello@mythnet.it

May Boggess
StataCorp

College Station TX 77840
mboggess@stata.com

Abstract. When competing risks are present, the appropriate estimate of the
failure probabilities is the cumulative incidence. stcompet creates new variables
containing the estimate of this function, its standard error, and ln(− ln) trans-
formed confidence bounds. Two examples are presented to illustrate the use of the
new command and some key features of the cumulative incidence.
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1 Introduction

Several authors have stressed the methodological problems arising in the analysis of
cohort studies or clinical trials when competing risks are present. A competing risk is
defined as an event whose occurrence precludes or alters the probability of occurrence
of a main event under examination. In this setting, the appropriate estimate of the
probability of failure is described by the so-called cumulative incidence. This function
is not calculated by many statistical software packages so that, as Gooley et al. (1999)
advocate, the complement of a Kaplan–Meier estimate (1-KM) is frequently misused
instead.

Indeed, to estimate (1-KM), the failures from a competing event are treated as cen-
sored at the time this event occurs. This way, we assume that the patients failing from
a competing risk are no more or less likely to fail from the cause of interest than the
patients still at risk beyond this time. When the aim is to estimate the failure proba-
bilities, this censoring is inappropriate because, after a competing event has occurred,
failure from the cause of interest is no longer possible.

The purpose of this paper is to make available for Stata users a new command,
stcompet, allowing users to estimate with one instruction, quickly and reliably, the
cumulative incidence, its standard error, and its confidence interval.

This paper presents methods implemented and the syntax of the new command.
Then, we provide two examples to illustrate its use and some key features of the cumu-
lative incidence.

c© 2004 StataCorp LP st0059
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2 Methods

The cumulative incidence for the failure type k is estimated as

Îk(t) =
∑

j|tj≤t

Ŝ(tj−1)
dkj

nj

where Ŝ(tj − 1) is the Kaplan–Meier estimate of the overall survival function, that is,
considering failures of any kind, and the second factor is an estimate of the hazard of
failure type k (Marubini and Valsecchi 1995, 338, equation 10.11).

This definition implies that the cumulative incidence is a function of the hazards of
all the competing events and not solely of the hazard of the event to which it refers.
Furthermore, the sum of all cumulative incidences has the nice feature that it equals
1 − Ŝ(t), the complement of the overall Kaplan–Meier estimate of survival considering
failures of any kind.

The variance estimator of the cumulative incidence implemented in stcompet is as
follows:

var
{
Îk(tj)

}
=

j∑

α=1

[{
Îk(tj) − Îk(tα)

}2 dα

nα(nα − dα)

]

+
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α=1

{
Ŝ(tα−1)

}2
(

nα − dkα

nα

)(
dkα

n2
α

)

− 2

j∑

α=1

{
Îk(tj) − Îk(tα)

}{
Ŝ(tα−1)

} (
dkα

n2
α

)

where dj =
∑C

k=1
dkj and C is the number of causes of failure (Marubini and Valsecchi

1995, 341, equation 10.12).

A general version of this formula was derived by Dinse and Larson (1986) using the
delta method and was used by Gaynor et al. (1993) in a study of oncological data.

Choudhury recently issued the S-Plus code to estimate the cumulative incidence and
its standard error (Choudhury 2002, appendices B and C). His code has been used to
validate the results achieved with the new Stata command comparing them with the
S-Plus output. In our checks, the variance of the cumulative incidence computed with
stcompet is exactly the same as that achieved with S-Plus.

The confidence interval calculated by stcompet is formed using ln(− ln) transformed
bounds:

Îk(t)
exp

[
±cα/2σ̂k(t)

Îk(t) ln{Îk(t)}

]

where cα/2 is the upper α/2 percentile of the standard normal distribution and σ̂k(t) is

the square root of var{Îk(tj)} (Choudhury 2002, equation 4).
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Choudhury demonstrates using simulations, that the ln(− ln) transform has better
coverage probability than both the linear and arcsine transforms (Choudhury 2002,
section 4).

3 Syntax

stcompet newvarname=
{
ci | se | hi | lo

} [ [
newvarname

]
= . . .

] [
. . .

] ] [
if exp

]
[
in range

]
, compet1(numlist)

[
compet2(numlist) compet3(numlist) . . .

compet6(numlist) by(varname) level(#)
]

As with all st commands, we must use stset before using stcompet. Furthermore,
in the previous stset, we must specify the failure event as

failure(failvar
[
==numlist

]
)

where the values in numlist are assumed to correspond to the occurrence of the event
of interest.

The syntax of stcompet is analogous to that of sts gen. It creates new variables
containing the estimated cumulative incidence and its standard error and bounds of
confidence interval:

newvarname specifies the name of the new variable where the estimate will be
recorded:

ci produces the cumulative incidence function

se produces the standard error of the cumulative incidence

hi produces the higher bound of the confidence interval based on ln{− ln(ci)}

lo produces the lower bound of the confidence interval based on ln{− ln(ci)}

4 Options

compet1(numlist) is not optional because at least one event must compete with the
event of interest. A failure of a competing event occurs whenever failvar, specified
in the previous stset, takes on any of the values of this numlist. The function
calculated will be estimated with this competing event and the event of interest.

compet2(numlist) . . . compet6(numlist) refer to failures for other competing events.

by(varname) produces separate functions by making separate calculations for each
value of varname. It may take on integer or string values.

level(#) specifies the confidence level, as a percentage, for the pointwise confidence
interval around the cumulative incidence functions. The default is is level(95),
which is the system parameter c(level).
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5 Examples

5.1 Example 1: Simulated data

Gooley et al. (1999) impressively illustrate the difference between the cumulative inci-
dence and the complement of a Kaplan–Meier estimate (1-KM). Their example using a
simulated dataset can be reproduced easily using stcompet.

To this aim, two types of failures are assumed, and a time to each type of failure
is generated for 5,000 subjects with a constant hazard being 0.25 for the first type of
failure and 0.99 for the second. A subject is assumed to fail from the event that occurs
earliest if it occurs before time equals to two units:

. clear

. set obs 5000
obs was 0, now 5000

. set seed 1234

. gen t25 = -1/.25 * log(1-uniform())

. gen t99 = -1/.99 * log(1-uniform())

. gen time = min(t99,t25)

. gen byte fail = (t25<t99) + 2*(t25>=t99)

. replace fail = 0 if time>=2
(414 real changes made)

. replace time = 2 if time>2
(414 real changes made)

. stset time, f(fail==1) noshow

failure event: fail == 1
obs. time interval: (0, time]
exit on or before: failure

(output omitted )

. sts gen KM = s

. gen Complement = 1- KM

. stcompet CumInc=ci, compet1(2)

In the previous lines, the occurrence of the first type of failure is declared in the
stset statement as the main cause of failure. Then, using stcompet the occurrence of
the second type of failure is specified as a competing risk in the compet1() option. The
command creates a new variable, named CumInc, where the estimate of the cumulative
incidence is recorded for both types of failure at each time when a corresponding failure
occurs. To achieve a plot (figure 1) comparing 1-KM with the cumulative incidence of
the first type of failure, a new variable must be created to contain only the estimate
pertaining to it.

. gen CI=CumInc if fail==1
(4042 missing values generated)

. twoway line Complement CI time, sort xlabel(0(.5)2)
> ylabel(0(.1).5) ytitle("Probability") legend(off)
> text(.31 1.2 "1-KM", place(e))
> text(.15 1.6 "CI", place(e))
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Figure 1: Complement of the KM estimate and cumulative incidence of the first type of
failure.

Gooley et al. (1999) stressed in this example that, in a competing risk setting, the
complement of the Kaplan–Meier overestimates the true failure probability, whereas the
cumulative incidence is the appropriate quantity to use.

Extending the dataset above, the example (Kalbfleisch and Prentice 2002, 252, ex-
ample 8.1) is now reproduced to illustrate a further point related to the cumulative
incidence. As the cumulative incidence depends on all competing hazards, some unex-
pected results may be produced when two groups are compared.

We suppose that a new treatment halves the type 2 hazard, whereas it does not affect
the type 1 hazard. Therefore, to the previous “untreated” subjects we add another 5,000
“treated” subjects whose hazard for the second type of failure is 0.99/2 = 0.495:

. set obs 10000
obs was 5000, now 10000

. gen treat = _n>5000

. replace t25 = -1/.25 * log(1-uniform())
(10000 real changes made)

. replace t99 = -1/.495 * log(1-uniform()) in 5000/l
(5001 real changes made)

. replace time = min(t99,t25)
(6851 real changes made)

. replace fail = (t25<t99) + 2*(t25>=t99)
(6542 real changes made)

. replace fail = 0 if time>=2
(1567 real changes made)
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Using the option by(varname), stcompet can estimate the cumulative incidence
separately in the treated and untreated groups:

. stset time, f(fail==1) noshow

(output omitted )

. stcompet Newci=ci,compet1(2) by(treat)

To graph this function for each failure type and treatment arm, two new variables
are created starting from the estimates stored in the variable Newci:

. gen CI_treat1=Newci if treat==1
(6140 missing values generated)

. gen CI_treat0=Newci if treat==0
(5427 missing values generated)

. label var CI_treat1 "Treated"

. label var CI_treat0 "Untreated"

. label define fail 1 "fail 1" 2 "fail 2"

. label val fail fail

. twoway line CI_* time if fail,
> sort yti("Cumulative Incidence")
> xti("time") xla(0(.5)2) yla( 5)
> by(fail, style(compact) rows(1)
> yrescale legend(pos(12)) note(""))
> subtitle(, ring(0) pos(11) nobexpand)
> clp("-##" solid) clw(thick thick)
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Figure 2: Cumulative incidence of type 1 and type 2 failure in treated and untreated
groups.

Figure 2 shows the reduction of the cumulative incidence of the type 2 failure in
treated patients but also an apparent effect of the treatment on the incidence of the
type 1 failure. As noted by Kalbfleisch and Prentice in their example, the cumulative
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incidence of type 1 failure increases in treated patients only as a result of the change in
the type 2 rates.

5.2 Example 2: prostate cancer

As an example in a real context, consider the survival times of 506 patients with prostate
cancer who are randomly allocated to a treatment with diethylstilbestrol. These data
were considered by several authors, first by Byar and Green (1980) and more recently
by Kay (1986) and Lunn and McNeil (1995), who use them to fit two different Cox
models.1

In this dataset, the value of the variable status classifies the cause of death as 1 =
cancer (the event of interest), 2 = cardiovascular disease, and 3 = other. The patients
are considered treated if they received at least 1 mg of diethylstilbestrol daily.

In this situation, there are two events competing with the event of interest. Further-
more, the probability of occurrence of each of them has to be separately computed in
the two treatment arms. Once Stata has been told with stset about the basic struc-
ture of the survival data at hand, stcompet can generate with just one instruction the
cumulative incidence and its confidence bounds for each event and two treatment arms:

. use prostatecancer, clear

. stset time, f(status==1)

failure event: status == 1
obs. time interval: (0, time]
exit on or before: failure

(output omitted )

. stcompet CI = ci hilim = hi lowlim = lo, compet1(2) compet2(3) by(treatment)

Three new variables have been created: CI, hilim, and lowlim for the cumulative
incidence and its high and low confidence bound. The estimates relating to a specific
event are recorded at each time when this failure type occurs. So analogously to the
previous simulated example, two new variables are generated to distinguish the estimates
between treatment arms:

. gen CI_tr = CI if treat

. label var CI_tr "Treated"

. gen CI_untr = CI if !treat

. label var CI_untr "Untreated"

. gen hi_tr = hilim if treat

. gen hi_untr = hilim if !treat

. gen lo_tr = lowlim if treat

. gen lo_untr = lowlim if !treat

1In the do-file accompanying this insert, we include the commands for fitting a Cox model by
augmenting the data as described in Lunn and McNeil (1995) and Kalbfleisch and Prentice (2002, for-
mula 8.16).
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To assess simultaneously the changes in the risk of each failure type induced by
treatment, we can easily achieve a plot such as figure 3:
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Figure 3: Cumulative incidence of cancer, cardiovascular disease and other causes of
death in treated and untreated patients with prostate cancer.

Looking at the graph, we immediately notice that the treatment reduces the proba-
bility of cancer death, but simultaneously it increases the risk of cardiovascular death.
Nevertheless, remembering the previous simulated example, it might be unwise to con-
clude that the rate of cardiovascular death is increased too.

Tests for difference between cumulative incidence have been proposed by Gray
(1988). Note that, as Gooley et al. (1999) emphasize, this difference depends on the
hazards of all competing risks, so testing it is not the same as testing the difference of
the hazards for a specific cause. Though stcompet does not compute a test, it allows us
to take a glance at this subject graphing (see command below) the confidence bounds
of the cumulative incidence for a specific failure in the compared groups.

. twoway line CI_* hi_* lo_* time if cause==1,
> sort c(J J J J J J) clp(l -## l -## l -##)
> clw(medthick medthick medthick medthick medthick medthick)
> clc(black black black black black black)
> yla(0(.2).6) xla(0(20)80) yti("Cancer Cumulative Incidence")
> ysca(range(0.6)) legend(order(1 2) ring(0) pos(11) cols(1))

In figure 4, cancer cumulative incidence for treated and untreated patients is com-
pared. The confidence bounds overlap, so a significant difference between the cumulative
incidence of these groups cannot be expected.
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Figure 4: Cumulative incidence and corresponding confidence bounds of cancer death
in treated and untreated patients with prostate cancer.
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