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Abstract. Variable bandwidth kernel density estimators increase the window
width at low densities and decrease it where data concentrate. This represents
an improvement over the fixed bandwidth kernel density estimators. In this ar-
ticle, we explore the use of one implementation of a variable kernel estimator in
conjunction with several rules and procedures for bandwidth selection applied to
several real datasets. The considered examples permit us to state that when work-
ing with tens or a few hundreds of data observations, least-squares cross-validation
bandwidth rarely produces useful estimates; with thousands of observations, this
problem can be surpassed. Optimal bandwidth and biased cross-validation (BCV),
in general, oversmooth multimodal densities. The Sheather–Jones plug-in rule pro-
duced bandwidths that behave slightly better in this respect. The Silverman test
is considered as a very sophisticated and safe procedure to estimate the number of
modes in univariate distributions; however, similar results could be obtained with
the Sheather–Jones rule, but at a much lower computational cost. As expected,
the variable bandwidth kernel density estimates showed fewer modes than those
chosen by the Silverman test, especially those distributions in which multimodality
was caused by several noisy minor modes. More research on the subject is needed.

Keywords: st0036, kernel density estimation, bandwidth, cross validation, multi-
modality test

1 Introduction

The variable bandwidth kernel density estimators (VBKDE) were briefly introduced in
a previous article (Salgado-Ugarte et al. 1993). In this paper, we present some VBKDEs
updated programs, and based on Sheather (1992) ideas, we explore their performance in
conjunction with several rules and procedures for bandwidth choice on four real datasets
previously analyzed.

The kernel density estimators (KDEs) are superior at recovering interesting struc-
ture and should be used instead of the traditional histograms or frequency polygons to
analyze in detail data distributions. As stated in Salgado-Ugarte et al. (1993), the fixed
bandwidth KDEs are vulnerable to noise in any low count interval of the distribution and
miss distribution details in regions where data concentrate. In more technical terms,
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134 Variable bandwidth kernel density estimators

the bandwidth (h) should increase with f(x) to reduce variance and should decrease
with |f ′′(x)| to reduce bias. The ordinary kernel estimator lacks adaptivity and thus
tends to oversmooth regions with high structure and to undersmooth the distribution
tails or any data range with low structure (Simonoff 1996). To address this problem,
one idea is to increase the window width in areas of low data densities and to decrease
it at intervals with high counts. In this way, it is possible to recover detail where data
concentrate and to eliminate noise where observations are sparse (Fox 1990).

There are several kernel density estimators, each using different algorithms and
functions. Which KDE is the best? Currently, no method can claim to be “best”,
but one candidate would be the variable-bandwidth kernels (besides local kernels and
transformation-based kernels), which achieve desirable local adaptivity and retain the
intuitive appeal of the kernel. Nevertheless, they may share problems such as bound-
ary bias (Simonoff 1996). A different approach has been suggested by Udina (1995),
and more precisely by Marron and Udina (1998), who propose a subjective interactive
procedure to vary the bandwidth. In what follows, we present some implementations
of a variable bandwidth KDE in combination with several recommended procedures for
data-based bandwidth choice.

2 New programs

The following programs are updated versions of the previously introduced (Salgado-
Ugarte et al. 1993) programs adgakern and adgaker2, which use the algorithm adapted
from Silverman (1986) by Fox (1990):

2.1 Syntax

varwiker varname
[
if exp

] [
in range

]
, bwidth(#)

[
gen(denvar) nograph

graph options
]

varwike2 varname
[
if exp

] [
in range

]
, bwidth(#)

[
npoint(#)

gen(denvar gridvar) numodes modes nograph graph options
]

2.2 Description

varwiker estimates the density of varname using the variable bandwidth Gaussian
kernel described in Fox (1990) modified from Silverman (1986) and draws the result.

varwike2 estimates the density of varname using the variable bandwidth Gaussian
kernel described in Fox (1990) modified from Silverman (1986), but at the second cal-
culation stage only uses a uniformly spaced number of points (50 by default) to finish
drawing the graph of the estimation.
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2.3 Options

bwidth(#) specifies (as a geometric mean) the width of the window around each data
point. bwidth is not optional. If not specified, the program halts and displays an
error message on screen.

npoint(#) specifies the number of equally spaced points (grid) in the range of varname

used for the density estimation. The default is 50 gridpoints.

gen(denvar gridvar) generates the variable denvar with the density values (varwiker)
or generates the variable denvar with the density values estimated at the points
given by gridvar (varwike2).

numodes displays the number of modes in the density estimation.

modes lists the estimated values for each mode. The numodes option must be included
first.

nograph suppresses drawing of the graph.

graph options are any of the options allowed with graph, twoway (Stata 7).

3 Methods

3.1 Variable bandwidth kernel density estimation

As a first step, varwiker estimates densities using a Gaussian kernel with fixed win-
dow, then uses these estimates to determine local weights inversely proportional to
the preliminary density estimate. These local weights are used to adjust the window
width so that it is narrower at high densities (retaining detail) and wider where density
is low (eliminating noise). The algorithm to calculate the variable bandwidth KDE is
(Silverman 1986; Fox 1990; Salgado-Ugarte et al. 1993) as follows:

1. Calculate a preliminary density estimate by using a fixed-bandwidth kernel func-
tion, f̂K(x).

2. At each observation Xi, calculate a local window factor, wi, that is inversely
related to the density estimate

w =

{
f̃ǫ

f̂K(Xi)

}1/2

where

f̃ǫ =

{
n∏

i=1

f̂K(Xi)

}1/n

is the geometric mean of the f̂(Xi), and thus the wi weights have a product and
geometric mean of one.
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3. Use the weights to calculate the adaptive-kernel estimator

f̂A(x) =
1

nh

n∑

i=1

1

wi
K

(
x − Xi

wih

)

4. Iterate steps 2 and 3, using f̂A in place of f̂K . In practice, iteration produces little
change in the estimated densities (Fox 1990).

Because this implementation requires the calculation of local weights for each in-
dividual observation based on a preliminary density estimation, the time required is
proportional to N. With a lot of observations, you need to be patient.

3.2 Bandwidth selection

In comparison with histograms, the use of kernel density estimation solves the problems
of origin and discontinuity; however, that of interval width choice remains. There are
several ways to select an appropriate bandwidth. In general, these methods approximate
the optimal bandwidth by minimizing an error measurement under specified conditions.
We have included a collection of these procedures in bandw.ado (Salgado-Ugarte et al.
1995b).

Sheather and Jones (1991), extending the work of Park and Marron (1990), de-
scribed a bandwidth selection procedure with excellent properties. This plug-in pro-
cedure (as it is named) uses an iterative approach and, by a numerical algorithm, finds
the h value, which solves the formula for the optimal smoother parameter. In particu-
lar, it is more stable than the cross-validation approach. Cross-validation estimates the
integrated squared error function and locates the minimum. The plug-in approach min-
imizes the function theoretically and then estimates this minimizing value directly. Due
to its good performance, this method is subject to less variability (Bowman and Azzalini
1997).

In what follows, we present the application of VBKDEs employing the following six
bandwidth selection procedures:

1. Oversmoothed (OS)

2. Optimal of Silverman (O)

3. Least-squares cross validation (LSCV)

4. Biased cross-validation (BCV)

5. Sheather–Jones plug-in (SJPI)

6. Silverman test (ST)
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These methods have been discussed elsewhere in the related literature: Silverman
(1986), Härdle (1991), Scott (1992), Wand and Jones (1995), Simonoff (1996), and
Bowman and Azzalini (1997); STB inserts on the subject are Salgado-Ugarte et al. (1993,
1995a, 1995b, 1997).

Procedures 1–4 and 6 were calculated using the programs presented in Salgado-
Ugarte et al. (1995b; 1997); procedure 5 was estimated by an XploRe program routine
(Härdle et al. 1995).
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Figure 1: Geyser data: a) Oversmoothed VBKDE (G-mean of h = 0.47); b) Optimal
VBKDE (G-mean of h = 0.37); c) LSCV score function. Minimum is located at M = 10,
indicating a bandwidth h = 0.1; the line to the right represents the OS bandwidth (M
= 47; h = 0.47); d) VBKDE with the LSCV bandwidth (G-mean of h = 0.1)
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Figure 2: Geyser data: a) BCV score function. Vertical line on the right is the OS

bandwidth (M = 122.6, h = 1.226). The local minimum to the left of the OS bandwidth
is located at M = 75, h = 0.75; b) VBKDE with the BCV bandwidth, G-mean of h =
0.29 (rescaled to Gaussian by 0.75*0.381); c) VBKDE with the SJPI bandwidth (G-mean
of h = 0.21); d) VBKDE with the ST bandwidth, G-mean of h = 0.43, resulting from
(0.699 + 0.166)/2 (Table 1)

4 Datasets

To observe the performance of the variable bandwidth kernel, we use the following
published datasets:

1. Old Faithful geyser data; in his monography on density estimation, Silverman
(1986) considers the length of 107 eruptions of Old Faithful geyser in Yellowstone
National Park, USA, taken from Weisberg (1980).

2. Old Mexican stamps data; the value of antique stamps in part is determined by
the thickness of the paper they are printed on. In a classical report, Izenman and
Sommer (1988) carried out a detailed analysis of the thickness of 485 specimens
from the 1872 Hidalgo stamp issue of Mexico.
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3. Galaxies data; in order to present a semi-parametric density estimation procedure,
Röeder (1990) used the velocities of 82 galaxies in the Corona Borealis region,
measured by Postman et al. (1986) to recognize clusters leading to a multimodal
distribution.

4. Catfish data; in fisheries biology, the occurrence of multimodal size distributions
can be used to estimate the growth of species. Salgado-Ugarte et al. (1997) em-
ployed data of standard body length measures of 1,116 catfish to present a boot-
strap procedure to test multimodality.
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Figure 3: Mexican stamps data: a) Oversmoothed VBKDE (G-mean of h = 0.005); b)
Optimal VBKDE (G-mean of h = 0.004); c) LSCV score function. There is no indication
of a local minimum (bandwidth values are multiplied by 100) d) BCV score function.
Vertical line on the right is the OS bandwidth (M = 26.072, h = 1.3036). There are two
local minima, one at M = 7, h = 0.35 and other at M = 17, h = 0.85 (bandwidth values
are multiplied by 100)
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Figure 4: Mexican stamps data: a) VBKDE with the BCV bandwidth (rescaled to a
Gaussian kernel) G-mean of h = 0.00324; b) VBKDE with the lowest value indicated
by BCV = SJPI bandwidth (G-mean of h = 0.0013); c) VBKDE with the ST bandwidth,
G-mean of h = 0.0015

5 Results

For all the cases, we present the VBKDEs employing the respective bandwidths to obviate
a table with the numeric results. Included is one table with the Silverman’s test results
not previously reported, as the others are available in the papers on the subject.

5.1 Example 1: Geyser data

The bandwidths obtained were from 0.1 (LSCV) to 0.47 (OS) and the resulting estimates,
excepting that from LSCV, are bimodal. The bimodal distribution obtained with the
OS bandwidth makes evident the existence of (at least) two modes. Silverman (1986)
smoothed these data using a trial-and-error scheme choosing a band of 0.25. This
bandwidth value coincides with those produced by SJPI and BCV. The Silverman’s test
resulted in a bandwidth value located between the oversmoothed and the optimal. The
LSCV bandwidth is very narrow, producing a very noisy density estimate. The BCV score
shows two local minima, but only one of them is located to the left of the oversmoothed
bandwidth.
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Table 1: Critical bandwidths and estimated significance levels for geyser data Silverman
(1986), n = 107

Number of modes Critical bandwidth p-value
1 0.700 0.00
2 0.166 0.53
3 0.133 0.50
4 0.116 0.47
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Figure 5: Galaxies data: a) Oversmoothed VBKDE (G-mean of h = 2164.7); b) Optimal
VBKDE (G-mean of h = 1016); c) LSCV score function. Minimum is located at M = 6,
indicating a bandwidth h = 600; the line to the right represents the OS bandwidth (M
= 21.6 5; h = 2165); d) VBKDE with the LSCV bandwidth (G-mean of h = 600)
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Figure 6: Galaxies data: a) BCV score function. Vertical line on the right is the OS

bandwidth (M = 22.7, h = 5678). The local minimum to the left of the OS bandwidth
is located at M = 14, h = 3500 (Quartic kernel); b) VBKDE with the BCV bandwidth
(rescaled to a Gaussian kernel) G-mean of h = 1333.5; c) VBKDE with the SJPI band-
width (G-mean of h = 647); d) VBKDE with the ST bandwidth, (G-mean of h = 1720)

5.2 Example 2. Old Mexican stamps

As reported by Sheather (1992), it was not possible to calculate the LSCV bandwidth
due to the rounding of the original data. This can be observed in the LSCV function
graph (Figure 3c), which does not show a local minimum. The other calculated band-
widths range from 0.005 (OS) to 0.0015 (PISJ and PS). The BCV score presented two
local minima (Figure 3d); the lower bandwidth was equivalent to that of PISJ (0.0013)
and the second had an intermediate value of 0.00324. The thick values were multiplied
by 100 to run the cross-validation programs. The density estimates show from two to
six modes. Izenman and Sommer (1988), based on exhaustive historical data, found
explanation for the first five of their estimated seven modes. These authors also used
the likelihood-ratio test (Wolfe 1970), which suggested a mixture of five Gaussian distri-
butions. The larger modes could be artifacts derived from the fixed bandwidth density
estimate used. This statement suggests that a variable KDE would be particularly useful
to analyze these data. As expected, our results with a variable bandwidth estimator
minimize the effect of the largest few values, emphasizing five main modes and only a
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small mode towards larger thickness values. Note that the PISJ bandwidth produced
a similar value to those from the Silverman’s test or the lowest bandwidth from BCV,
but at a much lower computational cost. These estimations suggest one small potential
mode between the two largest modes found by Minnotte and Scott (1993) and clearly
indicated by the Marron and Udina (1998) procedure. The OS bandwidth points out
the multimodal nature of the data. As has been noted by other authors (Scott 1992;
Salgado-Ugarte et al. 1997), the optimal bandwidth cannot show adequately the several
modes in the distribution.
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Figure 7: Catfish data: a) Oversmoothed VBKDE (G-mean of h = 15.6); b) Optimal
VBKDE (G-mean of h = 12.2); c) LSCV score function. Minimum is located at M = 8,
indicating a bandwidth h = 4; the line to the right represents the OS bandwidth (M =
31.26; h = 15.63); d) VBKDE with the LSCV bandwidth (G-mean of h = 4)

(Continued on next page)



144 Variable bandwidth kernel density estimators

a)

B
C
V

� value
M�value1 20 40 60

.0063

.0056

b)

D
e
n
s
it
y

Midpoints
26 287

.0194

0

c)

D
e
n
s
it
y

Midpoints
25 288

0

.019

Figure 8: Catfish data: a) BCV score function. Vertical line on the right is the OS

bandwidth (M = h = 41). The minimum is located at M = h = 9 (Quartic kernel); b)
VBKDE with the BCV bandwidth rescaled to a Gaussian kernel (G-mean of h = 3.43);
c) VBKDE with the SJPI bandwidth (G-mean of h = 3.9)

5.3 Example 3. Galaxy velocities data

The obtained bands range from 600 (LSCV) to 4762.5 (BCV), with five and one mode,
respectively. For these data, Röeder (1990) developed a semiparametric estimate for the
density based on the election of the Gaussian mixture that maximizes a nonparametric
goodness-of-fit measure that is a function of the sampling spaces. This method produces
a punctual estimate and a confidence set of plausible densities. This bandwidth applied
to the galaxies velocity data produced a punctual estimate with five modes, but with
no less than three or more than seven.

In this example, the OS bandwidth results in a main central mode and indications
of one mode towards the left and another towards the right; the BCV and the Silverman
test oversmoothed the data to the point in which any detail of the mode around 22,500
(as detected by the other methods) was lost.

The LSCV and SJPI gave very similar estimations, each one with four modes. There-
fore, it seems that the OS, LSCV, and SJPI properly represent this data distribution.
Silverman’s bandwidth (as reported by Röeder (1990) produced a conservative result
((940 + 2500)/2 = 1720) that with the variable bandwidth KDE produced only two
modes.
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5.4 Example 4: Catfish data

The bandwidths ranged from 3.43 (BCV) to 15.6 (OS). This dataset has been used
as an example for fixed width KDE application to detect cohorts and estimate fish
growth. In this respect, it is worthwhile to note that the sample size is the largest
from the reviewed datasets and that this large n resulted in stable bandwidth selection
calculations. The OS bandwidth strongly suggests the existence of multimodality, a
feature more clearly defined by the optimal bandwidth, indicating that this value is too
wide to really represent the distribution of the data. The other bandwidths attained very
similar magnitudes and lead to the presence of four modes. The coincidence between
LSCV and BCV is a fact noted by Scott (1992), and in this case, the SJPI bandwidth
coincides too. The Silverman test suggests a bandwidth compatible with the hypothesis
of four modes in the distribution. This number of density maximum is obtained with
bandwidths from 3.93 to 12.34, therefore, and in accordance with the above quoted
results, we could choose 4 as the bandwidth representing data distribution.

6 Conclusions

As indicated in other similar analysis (for example, Sheather 1992), not knowing the
true underlying distribution form does not permit one to make definitive statements
on the distributions. Nevertheless, with the presented examples, it is possible to state
several generalities.

Working with several tens or a few hundreds of observations, the variability of LSCV

bandwidth seriously limits its practical use. However, it seems that as the number of
observations is increased (thousands as in the catfish length dataset), this value becomes
more stable. The optimal Silverman bandwidth, in general, oversmooths the densities
with multimodality indication. The SJPI bandwidth was slightly better in this respect.
The BCV oversmoothed multimodal densities, too.

As expected, in several cases, the variable bandwidth KDE estimates showed less
modes than the number sustained by the Silverman’s test. This is particularly true for
the datasets having few dominant modes and some groups with few observations.

It is expected that a concordance among bandwidth selection methods working with
high n values (in the order of thousands) will occur, even with multimodal distributions,
although with modes represented with more or less equal number of observations.

Working with simulated distributions, Jones et al. (1996) found that the SJPI consid-
ered here had the best performance. Therefore, more work is needed to propose criteria
for comparison of different bandwidth selectors by means of Monte Carlo simulations.
In either case, the performance of the SJPI in all the examples is impressive, as some-
times it achieves the same result as the Silverman test, considered a very sophisticated
and safe procedure to estimate the number of modes in univariate distributions.

It would be interesting to implement a variation of the Silverman test that uses the
variable bandwidth KDE. More research on the subject is warranted.
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