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From the help desk: Bootstrapped standard

errors

Weihua Guan
Stata Corporation

Abstract. Bootstrapping is a nonparametric approach for evaluating the dis-
tribution of a statistic based on random resampling. This article illustrates the
bootstrap as an alternative method for estimating the standard errors when the
theoretical calculation is complicated or not available in the current software.
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1 Introduction

Suppose that we have a random sample from an unknown (possibly multivariate) dis-
tribution F , and we want to make statistical inferences about a parameter θ. The
traditional parametric approach depends upon strong distributional assumptions of F .
Given the form of F , analytical formulas can be derived for an estimator, θ̂, and hence
its standard error. While a consistent estimator may be easy to obtain, the formula
for the standard error is sometimes more difficult, or possibly even mathematically in-
tractable. Moreover, the sampling distribution of θ̂ may not be of any known standard
distribution.

Bootstrapping is a nonparametric approach that permits one to avoid the theoretical
calculation. It relies upon the assumption that the current sample is representative of
the population, and therefore, the empirical distribution function F̂ is a nonparametric
estimate of the population distribution F . From the sample dataset, the desired statis-
tic, θ̂, can be calculated as an empirical estimate of the true parameter. To measure
the precision of the estimates, a bootstrapped standard error can be calculated in the
following way:

1. draw random samples with replacement repeatedly from the sample dataset;

2. estimate the desired statistic corresponding to these bootstrap samples, which
forms the sampling distribution of θ̂; and

3. calculate the sample standard deviation of the sampling distribution.

This approach utilizes the same theory underlying Monte Carlo simulation methods,
except it utilizes resamples from the original data rather than from the population.
When the sample size is large, the bootstrapping estimates will converge to the true
parameters as the number of repetitions increases.
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In this paper, several applications of bootstrapping procedures are presented to
obtain standard errors. Although the real utility of the bootstrap method is in cases
where a model-based solution is not currently available, for all of the examples presented
here, at least one model-based solution exists. This was done so that the bootstrap
solution could be compared with a known solution. To evaluate the results, we use
Monte Carlo simulation, and the procedure is as follows:

1. define the population and draw random samples of size n;

2. use bootstrap to obtain bootstrapping estimates;

3. compute the estimates using a model-based method;

4. repeat step 1–3; and

5. calculate the proportions of Type I error in these methods.

Steps 1–4 are implemented using the simulate command.

2 Robust standard errors with clustered data

The assumption that error terms are independently and identically distributed (i.i.d.)
is often critical in statistical analysis. However, this assumption may not always hold,
and a statistical method will fail to give satisfactory results. Suppose, for example,
we perform an experiment where we randomly select a group of individuals and then
repeatedly measure each individual’s blood pressure at uniform intervals of time over a
period of several days. Though the individuals are randomly selected and can therefore
be assumed to be independent of each other, the blood pressures of the same individual
may be correlated. Having this prior knowledge regarding the sampling design, we know
we must employ statistical methods that are able to account for the within-individual
correlation.

2.1 Simple linear models

Let us first consider a simple linear regression model:

y = Xβ + ǫ

The OLS estimate of the coefficient is (X′X)−1X′y, and the estimate of variance is
s2(X′X)−1, where s2 is the mean square error, when the samples are i.i.d. For clustered
data, the OLS estimator of the coefficients is still consistent, but the conventional esti-
mates of variances yield incorrect coverage probability. Stata has implemented a robust
estimator (also called the Huber/White/sandwich estimator), obtained by specifying
the cluster() or robust option to regress. In the presence of heteroskedasticity,
i.e., the data are independent but not identically distributed, robust can be specified
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to give standard errors that are valid for statistical inference. Specifying cluster will
further relax the assumption of independence within clusters. Alternatively, we may
apply bootstrapping techniques to obtain estimates for the variances.

The following Monte Carlo simulation draws random samples from a linear model,
where there exists two explanatory variables x1 and x2. The random noise, e, is drawn
as normally distributed. z stands for the individual effects, varying across clusters, such
that the assumption of independence will not hold at the observation level. All of the
coefficients, including the constant term, are set to one in the simulation. We obtain the
estimates through OLS regression and compare the coverage of robust standard errors
with that of bootstrapped standard errors.

The simulation program is as follows:

program regclus, rclass // to be called by -simulate-
version 8

drop _all
set obs 1000 // generate 1000 panels
generate z = invnorm(uniform()) // panel-level baseline
generate id =_n // panel identification variable
expand 5 // generate 5 observations per panel

generate x1 = invnorm(uniform())*1.5 // x1 and x2 are explanatory variables
generate x2 = invnorm(uniform())*1.8
generate e = invnorm(uniform()) // random noise
generate y = z + 1 + x1 + x2 + e

// robust standard errors
regress y x1 x2, cluster(id)
return scalar x1 = _b[x1]
return scalar x2 = _b[x2]
return scalar cons = _b[_cons]
return scalar sdx1 = _se[x1]
return scalar sdx2 = _se[x2]
return scalar sdcons = _se[_cons]

// bootstrapped standard errors
bootstrap "regress y x1 x2" "_b", reps(1000) cluster(id)
return scalar bs_sdx1 = _se[b_x1]
return scalar bs_sdx2 = _se[b_x2]
return scalar bs_sdcons = _se[b_cons]

end

In the simulation, 1,000 clusters are randomly generated, each cluster containing 5
observations. Since the observations are not independent within clusters, the bootstrap
samples are drawn in the unit of clusters, defined by id. The Monte Carlo simulation is
repeated 1,000 times, each having 1,000 bootstrap samples. The Stata command that
performs the simulation is

simulate "regclus" x1=r(x1) x2=r(x2) cons=r(cons) sdx1=r(sdx1) sdx2=r(sdx2) /*
*/ sdcons=r(sdcons) bs_sdx1=r(bs_sdx1) bs_sdx2=r(bs_sdx2) /*
*/ bs_sdcons=r(bs_sdcons), reps(1000)

The results are summarized below:
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. summarize, separator(0)

Variable Obs Mean Std. Dev. Min Max

x1 1000 .9999335 .0134354 .9562576 1.054577
x2 1000 .9995932 .0116971 .9636911 1.03762

cons 1000 1.002357 .0355351 .8854129 1.117827
sdx1 1000 .0133282 .0004434 .0116574 .0147066
sdx2 1000 .0111111 .0003669 .0100201 .0123095

sdcons 1000 .0346499 .0007497 .0321183 .0375121
bs_sdx1 1000 .0133209 .0005364 .0114567 .0151653
bs_sdx2 1000 .0110951 .0004436 .0095247 .0124349

bs_sdcons 1000 .0345745 .0010691 .0309909 .0378581

While the bootstrapped standard errors and the robust standard errors are similar,
the bootstrapped standard errors tend to be slightly smaller. Based on the estimated
coefficients and standard errors, Wald tests are constructed to test the null hypothesis:
H0 : β = 1 with a significance level α = 0.05. The empirical coverage probability is
defined as the fraction of times that the null hypothesis is not rejected. The binomial
confidence intervals of the coverage probabilities are calculated using the ci command,
where the the number of successes is the number of times that the null hypothesis is not
rejected and the binomial denominator is 1,000, the number of simulation repetitions.

Table 1: Monte Carlo simulation results for clustered data

empirical coverage
variable 1− α conventional robust bootstrap
x1 0.95 0.955 0.956 0.936

(0.940, 0.967)∗ (0.941, 0.968) (0.919, 0.950)
x2 0.95 0.957 0.953 0.943

(0.935, 0.963) (0.938, 0.965) (0.927, 0.957)
cons 0.95 0.733 0.939 0.942

(0.704, 0.760) (0.922, 0.953) (0.926, 0.956)

∗: binomial exact 95% confidence interval

The first column under empirical coverage gives the coverage probabilities of conven-
tional estimates without using the robust estimation (obtained from another simulation),
which shows that the empirical coverage level of the estimated constant term is only
73.3%. The coverage probabilities and the binomial confidence intervals support the
conclusion that the bootstrap and robust methods both produce valid estimates of vari-
ance such that inference for a specified significance level can be achieved with correct
coverage probability.
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2.2 Nonlinear least squares regression

In the first example, although the two methods show similar power for the hypothesis
tests, the robust estimator is more convenient and requires much less computation.
Now, we give an example for which there is no quick Stata solution.

The nl command fits a nonlinear model using least squares. However, unlike many
other commands, nl does not provides a cluster() option to handle clustered data. The
proposed solution is to make an assumption regarding the distribution of the disturbance
in the model. Having done so, one can then employ the method of maximum likelihood
to estimate the parameters of the model utilizing Stata’s ml command. This will allow
us to obtain robust variance estimates. As illustrated in the previous section, we may
also use bootstrapping to obtain the standard errors.

Suppose that we have a nonlinear model,

y = β0

(
1− e−xβ1

)
+ ǫ

which can be transformed as

ǫ = y − β0

(
1− e−xβ1

)

If we assume that the error term is normally distributed with mean 0 and variance σ2,
the log-likelihood function can be written as

lnL =
N∑

i=1

(
−

1

2
ln(2π)− lnσ −

1

2

ǫ2

σ2

)

Besides β0 and β1, the MLE method estimates an additional parameter σ, the standard
deviation of the random errors. Although we assume that the random errors have a
normal distribution, this method may still yield consistent estimates for β0 and β1.
Here we compare the robust estimates of the variances by using ml and specifying the
cluster() option with those obtained from the nonlinear regression and bootstrap
method (the bootstrap samples are drawn by clusters).

The Stata programs for ml and nl are given below.

program nlnexpgr
version 8
if "‘1’" == "?" { // if query call ...

global S_1 "B0 B1" // declare parameters
global B0=2 // and initialize them
global B1=2
exit

}
replace ‘1’=$B0*(1-exp(-$B1*x)) // otherwise, calculate function

end
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program mlnexpgr
version 8
args lnf B1 B0 lnsigma // the third equation is for

parameter ln(sigma)
tempvar sigma res
quietly generate double ‘sigma’ = exp(‘lnsigma’)
quietly generate double ‘res’ = $ML_y1 - ‘B0’*(1-exp(-‘B1’))
quietly replace ‘lnf’ = -0.5*ln(2*_pi)-ln(‘sigma’)-0.5*‘res’^2/‘sigma’^2

end

In the Monte Carlo simulation, the parameters β0 and β1 are both assigned a value
of 2. We performed simulations with sample sizes of 100, 500, and 1,000 clusters with
5 observations per cluster. 500 bootstrap samples were drawn for each simulation. The
empirical coverage probabilities are calculated from Wald tests and are listed in Table 2.
The simulation program is similar to the one in the first example, replacing the linear
equation with a nonlinear equation given above. In Table 2, we present the results from

Table 2: Monte Carlo simulation results for clustered data

empirical coverage
parameter 1− α na = 100 n = 500 n = 1000

ML β0 0.95 0.892 0.919 0.925
(0.871, 0.911)b (0.900, 0.935) (0.907, 0.941)

β1 0.95 0.881 0.912 0.920
(0.859, 0.900) (0.893, 0.929) (0.901, 0.934)

bootstrap β0 0.95 0.987 0.981 0.971
(0.978, 0.993) (0.970, 0.989) (0.959, 0.980)

β1 0.95 0.996 0.984 0.977
(0.990, 0.999) (0.974, 0.991) (0.966, 0.985)

a: n is the number of clusters in simulation. There are 5 observations per cluster.
b: binomial exact 95% confidence interval

Both methods yield unbiased estimates for the two parameters in all experiments.
The maximum likelihood estimator consistently yields coverage probabilities that are
small, and the bootstrap approach yields coverage probabilities that are greater than
0.95. The maximum likelihood estimators have been proven to be asymptotically ef-
ficient, which require large sample size to provide accurate coverage. The bootstrap
approach also relies upon large samples such that the samples can simulate the popu-
lation. Though the binomial confidence intervals do not include the value 0.95 in the
three experiments, the results show the tendency that the empirical coverage levels may
converge to the value of 0.95 when the number of simulated samples increases. Given the
fact that both MLE and bootstrap give asymptotic results, the sample size may play an
important role in obtaining appropriate coverage. In addition, the coverage of the boot-
strap method is calculated based on the normal approximation of the distribution of the
parameters. There are other methods, such as the percentile or bias-corrected method,
which may give more appropriate confidence intervals from the bootstrap samples.
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3 Two-stage regression with instrumental variables

In a classic linear regression model,

y = Xβ + ǫ

we assume that the covariates xi, . . . , xk are independent of the disturbance term ǫ.
In practice, the covariates are sometimes correlated with ǫ. Econometricians refer to
such variables as being endogenous. The OLS estimator is not consistent in the presence
of endogenous variables. The method of instrumental variables yields a consistent,
although biased, estimator. Now, let us extend the model to a general form,

y = f(Xβ) + ǫ

where y may be a categorical or limited dependent variable, and f() is a function of
the linear combination Xβ. Here we present an example for the tobit model with
endogenous explanatory variables, which is given by

y∗ = X1β + zγ + ǫ

where X1 contains a set of exogenous covariates and z is an endogenous covariate.
y∗ is the latent dependent variable, and the outcome is only observed when y∗ > 0.
The disturbance ǫ is assumed to be normally distributed. z can be related to a set of
instrumental variables

z = X1δ1 + X2δ2 + v

Amemiya (1978) proposed a generalized least squares (AGLS) estimator, which is
proved to be consistent and asymptotically efficient. This estimator is available in
Stata as a user-written command by Joe Harkness.

. search ivtobit, net

��
���� ��	�
�

Keywords: ivtobit
Search: (1) Web resources from Stata and from other users

��� ������
�� ���� ��	�	 	�� ����� �����

(contacting http://www.stata.com)

1 package found (Stata Journal and STB listed first)
----------------------------------------------------

ivprob-ivtobit from http://fmwww.bc.edu/RePEc/bocode/i
’IVPROB-IVTOBIT’: modules to estimate instrumental variables probit and
tobit / These programs implement Amemiya Generalized Least Squares (AGLS)
/ estimators for probit and tobit with endogenous regressors. / Newey
(J.Metr. 1987, eq. 5.6) provides the formulas used. The / endogenous

(end of search)

We can also perform fit the model manually by two stages: first, regress z on X1

and X2, and then fit the tobit model using the predicted values of z from the first
stage regression. The estimates of the parameters are proven to be consistent, although
the estimated variances are incorrect. We can utilize bootstrapping to obtain proper
standard errors. The method is demonstrated as follows:
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1. draw bootstrap samples;

2. run first-stage regression z = X1δ1 + X2δ2 + v;

3. calculate the predicted linear combination ẑ;

4. fit the tobit model using X1, Ẑ as explanatory variables;

5. repeat 1–4. Note that the two stage regressions need to be performed on the same
bootstrap samples; and

6. compute the standard errors from the sampling distribution of the estimates.

In the simulation, 1,000 random samples are generated for the tobit model, from
which the AGLS estimator and bootstrapped standard errors are computed. There are
2 exogenous variables x11 and x12, 1 endogenous variable z, which is instrumented
by x21 and x11, x12. The coefficients in the tobit model are assigned a value of 3 in
the simulation. 1,000 bootstrap samples of size 1,000 are drawn. The bootstrap and
simulation programs are given below:

program mytobit
version 8

regress z x11 x12 x21 // first-stage OLS regression
predict double zhat, xb // prediction
tobit y x11 x12 zhat, ll(0) // the tobit regression

end

program myivtobit, rclass // to be called by -simulate-
version 8

drop _all
set obs 1000
generate e1 = invnorm(uniform())
generate e2 = invnorm(uniform()) // generate error terms
generate x21 = uniform()
generate x11 = invnorm(uniform())*1.2
generate x12 = invnorm(uniform())*1.8
generate z = 1 + x21 + x11 + x12 + e1 // generate z as endogenous

generate y = 3 + 3*z + 3*x11 + 3*x12 + e2
replace y = cond(y>0, y, 0) // y is censored at 0

ivtobit y, endog(z) iv(x21) exog(x11 x12) ll(0)
return scalar x11 = _b[x11]
return scalar x12 = _b[x12]
return scalar z = _b[z]
return scalar cons = _b[_cons]
return scalar sdx11 = _se[x11]
return scalar sdx12 = _se[x12]
return scalar sdz = _se[z]
return scalar sdcons = _se[_cons]

bootstrap "mytobit" "_b", reps(1000)
return scalar bs_x11 = _b[b_x11]
return scalar bs_x12 = _b[b_x12]
return scalar bs_z = _b[b_z]
return scalar bs_cons = _b[b_cons]
return scalar bs_sdx11 = _se[b_x11]
return scalar bs_sdx12 = _se[b_x12]
return scalar bs_sdz = _se[b_z]
return scalar bs_sdcons = _se[b_cons]

end
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The results are summarized in Table 3. Wald tests were performed based on the
estimated coefficients and standard errors with a significance level of α = 0.05. The
empirical coverage probabilities are compared with the theoretical level.

Table 3: Monte Carlo simulation results for the tobit model with endogenous variables

A. Estimated Coefficients

estimated coefficients
variable coefficient AGLS bootstrap
x1 3 2.999 3.000
x2 3 3.001 3.002
y1 3 3.001 2.998
cons 3 2.999 3.006

B. Empirical Coverage

empirical coverage
variable 1− α AGLS bootstrap
x1 0.95 0.949 0.963

(0.933, 0.962)∗ (0.949, 0.974)
x2 0.95 0.950 0.961

(0.944, 0.970) (0.947, 0.972)
y1 0.95 0.956 0.963

(0.952, 0.976) (0.949, 0.974)
cons 0.95 0.954 0.962

(0.957, 0.980) (0.948, 0.973)

∗: binomial exact 95% confidence interval

Table 3(A) reports estimated coefficients from the Monte Carlo simulations, which
are all quite close to the true value. Table 3(B) shows the rate of not rejecting the
null hypothesis: H0 : β = 3. The coverage probabilities for the bootstrapped standard
errors are slightly higher than for the AGLS standard error for most of the coefficients.

4 Conclusion

This paper discusses the use of the method of bootstrapping as an alternative to obtain
standard errors for estimated parameters. The results from Monte Carlo simulations are
compared with those from parametric models. Given that the estimated coefficients are
consistent, the bootstrap approach reports coverage probabilities as good as parametric
methods. Though the examples were chosen for the estimation where other solutions
are available in Stata, we can easily extend the application of bootstrapping to other
situations. For instance, the third example illustrates a solution for the tobit models
with endogenous covariates. We can simply modify the bootstrap program for other
categorical or limited dependent variable models in the main equation as well. However,
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we also need to be cautious when applying the bootstrap method. In the third example,
if the first-stage regression is not a linear model, the two-stage estimates will not be
consistent, and thus one cannot obtain proper coverage using the bootstrap approach.

In the last two examples, the bootstrapped standard errors tend to be more conser-
vative than the parametric estimates and, hence, give wider coverage for the estimated
coefficients. The fact that we only have 1,000 bootstrap samples (500 in the second
example) may be a reasonable explanation. The bootstrap sampling distribution ap-
proaches the true sampling distribution as the number of resamples gets large. We can
reasonably imagine the coverage will be reduced by increasing the number of replica-
tions. Unpublished Monte Carlo simulation showed that the coverage probabilities in
the second example are dropped to 0.97–0.98 given 100 randomly sampled clusters (of
size 5) and 2500 bootstrap replications. However, the coverages will stay at the same
level when using more bootstrap repetitions with the sample size unchanged. The em-
pirical coverage probabilities do not approach 0.95 mainly because of the fairly small
sample size. While the nonparametric bootstrap method does not rely upon strong as-
sumptions regarding the distribution of the statistic, a key assumption of bootstrapping
is the similarity between the characteristics of the sample and of the population. When
the sample is of size 500 (100 independent clusters), the assumption of similarity may
not be reasonable. The results in Table 2 indicate that the empirical levels tend to
converge to 0.95 with increased sample size when the number of bootstrap replications
is fixed. In summary, the number of repetitions and sample size both play important
roles in the bootstrap method.
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