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Abstract. In hierarchical cluster analysis, dendrograms are used to visualize
how clusters are formed. I propose an alternative graph called a “clustergram” to
examine how cluster members are assigned to clusters as the number of clusters
increases. This graph is useful in exploratory analysis for nonhierarchical clus-
tering algorithms such as k-means and for hierarchical cluster algorithms when
the number of observations is large enough to make dendrograms impractical. I
present the Stata code and give two examples.
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1 Introduction

The Academic Press Dictionary of Science and Technology defines a dendrogram as
follows:

dendrogram Biology. a branching diagram used to show relationships between
members of a group; a family tree with the oldest common ancestor at the base, and
branches for various divisions of lineage.

In cluster analysis, a dendrogram (see [R] cluster dendrogram and, for example,
Everitt and Dunn 1991 and Johnson and Wichern 1988) is a tree graph that can be
used to examine how clusters are formed in hierarchical cluster analysis (see [R] cluster

singlelinkage, [R] cluster completelinkage, [R] cluster averagelinkage). Figure 1
gives an example of a dendrogram with 75 observations. Each leaf represents an indi-
vidual observation. The leaves are spaced evenly along the horizontal axis. The vertical
axis indicates a distance or dissimilarity measure. The height of a node represents the
distance of the two clusters that the node joins. The graph is used to visualize how
clusters are formed. For example, if the maximal distance on the y-axis is set to 40,
then three clusters are formed because y = 40 intersects the tree three times.

(Continued on next page)
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Figure 1: A dendrogram for 75 observations

Dendrograms have two key limitations. First, because each observation must be
displayed as a leaf, they can only be used for a small number of observations. Stata
7 allows up to 100 observations. As Figure 1 shows, even with 75 observations, it
is difficult to distinguish individual leaves. Second, the vertical axis represents the
level of the criterion at which any two clusters can be joined. Successive joining of
clusters implies a hierarchical structure, meaning that dendrograms are only suitable
for hierarchical cluster analyses.

For large numbers of observations, hierarchical cluster algorithms can be too time-
consuming. The computational complexity of the three popular linkage methods is
of order O(n2), whereas the most popular nonhierarchical cluster algorithm, k-means
([R] cluster kmeans; MacQueen 1967), is only of the order O(kn). Here, k is the
number of clusters, and n is the number of observations (Hand, Mannila, and Smyth
2001). Therefore, k-means, a nonhierarchical method, is emerging as a popular choice
in the data mining community.

I propose a graph that examines how cluster members are assigned to clusters as
the number of clusters changes. In this way, it is similar to the dendrogram. Unlike
the dendrogram, this graph can also be used for nonhierarchical clustering algorithms.
I call this graph a clustergram.

The outline of the remainder of this paper is as follows: Section 2 describes the
syntax and options of the new Stata command clustergram. Section 3 explains how
the clustergram is computed by means of an example related to asbestos lawsuits. The
example also illustrates the use of the clustergram command. Section 4 contains a
second example: Fisher’s famous Iris data. Section 5 concludes with some discussion.
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2 Syntax

clustergram varlist
[

if exp
] [

in range
]

, cluster(clustervarlist)
[

fraction(#)

fill graph options
]

Here varlist contains variables that are being clustered and must be supplied. I
illustrate this in an example below.

3 Options

cluster(clustervarlist) specifies the variables containing cluster assignments, as pre-
viously produced by cluster. More precisely, they usually successively specify
assignments to 1, 2, . . . clusters. Typically, they will be named something like
cluster1-clustermax , where max is the maximum number of clusters identified.
It is possible to specify assignments other than to 1, 2, . . . clusters (e.g., omitting
the first few clusters or in reverse order). A warning will be displayed in this case.
This option is required.

fraction(#) specifies a fudge factor controlling the width of line segments and is typ-
ically modified to reduce visual clutter. The relative width of any two line segments
is not affected. The value should be between 0 and 1. The default is 0.2.

fill specifies that individual graph segments are to be filled (solid). By default, only
the outline of each segment is drawn.

graph options are options of graph, twoway other than symbol() and connect(). The
defaults include ylabels showing three (rounded) levels and gap(5).

4 Description and the asbestos data example

A huge number of lawsuits concerning asbestos-related personal injuries have been filed
in the United States. One interesting question is “Can companies be clustered into
groups on the basis of how many lawsuits were filed against them?” The data consist
of the number of asbestos suits filed against 178 companies in the United States from
1970 through 2000. Figure 2 shows a plot of the log base 10 of the number of asbestos
suits over time for each of the 178 companies. Few asbestos lawsuits were filed in the
early years. By 1990, some companies were subject to 10,000 asbestos-related lawsuits
in a single year. I separate the number of asbestos suits by year to create 31 variables
for the cluster algorithm. Each variable consists of the log base 10 of the number of
suits that were filed against a company in a year.
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Figure 2: Plot of the log base 10 number of asbestos suits over time for each of the 178
companies

A principal components analysis of the covariance matrix of these 31 variables shows
that the first principal component captures 82% and that the second principal compo-
nent captures 7% of the variation. The first principal component consists of a weighted
average of all variables, with larger weights attributed to years with more lawsuits (ap-
proximately 1978–2000). Clearly, it is an overall measure of the number of lawsuits.
The second principal component consists of a contrast between variables corresponding
to 1978–1992 and those corresponding to 1993–2000. This component captures whether
the number of lawsuits continued to increase, stagnate, or decrease during these years.
Figure 3 shows a scatter plot of the first two principal components. The cluster at the
bottom consists of companies with none or few lawsuits.
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Figure 3: Scatter plot of the first two principal components
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In preparation for constructing the clustergram, the chosen cluster algorithm must
be run multiple times, each time specifying a different number of clusters (e.g., 1
through 20). For example, 20 cluster variables can be created named cluster1 through
cluster20, using the k-means clustering algorithm in Stata as follows:

. forvalues i = 1/20 {

. cluster kmeans log1970-log2000, k(‘i’) L1 name("cluster‘i’")

. }

These variables are needed as inputs for the clustergram. The clustergram is con-
structed as follows: For each cluster within each cluster analysis, compute the mean
over all cluster variables and over all observations in that cluster. For example, for
x = 2 clusters, compute two cluster means. For each cluster, plot the cluster mean
versus the number of clusters. Connect cluster means of consecutive cluster analyses
with parallelograms. The width of each parallelogram indicates how many observations
from a cluster were assigned to a cluster in the following cluster analysis.

Figure 4 illustrates this. Initially, all observations form a single cluster. This cluster
is split into two clusters. The lower parallelogram is much thicker than the upper one,
indicating that many more observations fall into the lower cluster. These two clusters
are then split into three clusters. A new cluster is formed in the middle, which draws
some observations that were previously classified in the lower cluster, and some that
were previously classified in the higher cluster. Because the new cluster is formed from
observations of more than one previous cluster (i.e., has more than one parent), this is
a nonhierarchical split. On the vertical axis, the log base 10 of the average number of
lawsuits filed against a company is shown. Therefore, “higher” or “lower” clusters refer
to clusters with companies that on average have a larger or smaller number of lawsuits.
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Figure 4: A clustergram for 1 to 3 clusters. The cluster assignments stem from the
k-means algorithm.
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To avoid visual clutter, the width of all parallelograms or graph segments can be
controlled through a fudge factor. This factor by default is 0.2 and can optionally be set
by the user. The amount should be chosen large enough that clusters of various sizes
can be distinguished, and small enough that there is not too much visual clutter.

Using the syntax introduced in Section 2, the clustergram with up to 20 different
clusters can be obtained as follows:

. clustergram log1970-log2000, cluster(cluster1-cluster20) fraction(0.1)
> xlab(1 2 to 20) ylab(0 0.5 to 3.5) fill
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Figure 5: Clustergram with up to 20 clusters. The k-means cluster algorithm was used.

Figure 5 displays the resulting clustergram for up to 20 clusters. We see that the
companies initially split into two clusters of unequal size. The cluster with the lowest
mean remains the largest cluster by far for all cluster sizes. One can also identify
hierarchical splits. A split is a hierarchical split when a cluster has only one parent
or predecessor. The split from 3 to 4 clusters is almost hierarchical (it is not strictly
hierarchical because a single company joins from the bottom cluster). Also, there are a
number of individual companies that appear to be hard to classify because they switch
clusters.

At 8 and 19 clusters, the two clusters at the top merge and then split again. This
highlights a weakness of the k-means algorithm. For some starting values, the algorithm
may not find the best solution. The clustergram in this case is able to identify the
instability for this dataset.

Figure 6 shows a clustergram for a hierarchical, average linkage cluster analysis.
These were obtained using the following Stata commands:

. cluster averagelinkage log1970-log2000, L1 name("clusX")

. forvalues i = 1/20 {

. cluster gen cluster‘i’ = group(‘i’)

. }
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Figure 6: A clustergram for an average linkage (hierarchical) cluster analysis.

Because of the hierarchical nature of the algorithm, once a cluster is split off, it
cannot later join with other clusters. Qualitatively, Figure 5 and Figure 6 convey the
same picture. Again, the bottom cluster has by far the most members, and the other
two or three major streams of clusters appear at roughly the same time with a very
similar mean.

In Figure 7, we see a clustergram for a hierarchical, single linkage cluster analysis.
Most clusters are formed by splitting a single company off the largest cluster. When
the 11th cluster is formed, the largest cluster shifts visibly downward. Unlike most of
the previous new clusters, the 11th cluster has more than one member, and its cluster
mean of about 2.5 is relatively large. The reassignment of these companies to the 11th
cluster causes the mean of the largest cluster to drop visibly. If our goal is to identify
several nontrivial clusters, this cluster algorithm does not suit this purpose. Figure 7
conveys this information instantly.

(Continued on next page)
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Figure 7: A clustergram for a single linkage (hierarchical) cluster analysis.

Of course, the ultimate decision on the number of clusters is always somewhat arbi-
trary and should be based on subject-matter expertise and the criterion that measures
within-cluster homogeneity, as well as on insight gained from the clustergrams. It is
re-assuring that k-means and the average linkage algorithm lead to qualitatively similar
results.

5 Iris data example

Fisher’s Iris data (Fisher 1938) consists of four variables: length and width of sepal
and petal of Iris. It is known that there are three different species of Iris, namely Iris

setosa, Iris versicolor , and Iris virginica.

It is of interest whether one can distinguish these species based on these four vari-
ables. Figure 8 shows a scatter plot of petal length and width. This scatter plot best
shows how the three species are separated. One species is relatively easy to distinguish
from the other two; distinguishing between the other two is harder. Because the data
consist of 150 observations, a full dendrogram cannot be drawn in Stata.

(Continued on next page)
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Figure 8: Scatter plot of petal width and petal length of the Iris data. Different
plotting symbols indicate different species: (1) Iris setosa, (2) Iris versicolor , and (3)
Iris virginica.

Figure 9 shows clustergrams for the k-means algorithm and the three linkage al-
gorithms for cluster analyses on the standardized dataset. The initial splits for the
k-means, average and single linkage algorithms look identical, and this turns out to be
true. At the initial split, species 1 (numbers as labeled in Figure 8) is separated from
species 2 and 3, which form a joint cluster. As we have seen in Figure 8, species 1
has lower x values, and therefore, the species 1 cluster corresponds to the lower branch
in Figure 9. As we have seen in Figure 7, the single linkage cluster algorithm has a
tendency to split off single observations. The fact that here the single linkage algorithm
forms two clusters of substantial size suggests that the clusters are well separated. This
is true, as we have seen in Figure 8. Because of its distance criterion (the maximum
distance between any two members of two clusters), the complete linkage cluster algo-
rithm tends to avoid elongated clusters in favor of more compact clusters. Here, the
complete cluster algorithm splits the elongated data cloud roughly in half.

(Continued on next page)
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Figure 9: Clustergram for four cluster analyses on the Iris data: k-means (upper left),
complete linkage (upper right), average linkage (lower left), and single linkage (lower
right).

When three clusters are formed, the k-means algorithm breaks the cluster consisting
of species 2 and 3 into separate clusters. By contrast, Figure 9 shows that the average
and single linkage cluster algorithm split off a small number of observations. The com-
plete linkage algorithm splits the lower cluster, attempting to separate species 1 from
other observations.

Table 1 displays the confusion matrix (the matrix of misclassifications) for each of
the four algorithms based on three clusters. k-means has the best classification rate,
classifying 83% of the observations correctly. However, the success of the k-means al-
gorithm depends on one of the initial cluster seeds falling into the cloud of species 1
observations. Surprisingly, the complete linkage algorithm has the second best classifica-
tion rate. Given its poor first split, the second split is nearly perfect. The single linkage
algorithm is confused by the proximity of species 2 and 3. The algorithm incorrectly
chooses to split a single observation off the pure cluster consisting of species 1.
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Table 1: Confusion matrix for several cluster algorithms on Fisher’s Iris data

Cluster 1 Cluster 2 Cluster 3
k-means

83% correctly classified Species 1 50 0 0
Species 2 0 39 11
Species 3 0 14 36

Complete Linkage
79% correctly classified Species 1 49 1 0

Species 2 0 21 29
Species 3 0 2 48

Average Linkage
69% correctly classified Species 1 50 0 0

Species 2 0 50 0
Species 3 0 47 3

Single Linkage
66% correctly classified Species 1 49 0 1

Species 2 0 50 0
Species 3 0 50 0

6 Discussion

The clustergram is able to highlight quickly a number of things that may be helpful in
deciding which cluster algorithm to use and/or how many clusters may be appropriate:
approximate size of clusters, including singleton clusters (clusters with only one mem-
ber); hierarchical versus nonhierarchical cluster splits; hard to classify observations; and
the stability of the cluster means as the number of clusters increase.

For cluster analysis, it is generally recommended that the cluster variables be on
the same scale. Because means are computed, this is also true for the clustergram. In
the asbestos claims example, all variables measured the same quantity: the number of
lawsuits in a given year. For most other applications—including Fisher’s Iris data—it
is best to standardize the variables.

The dendrogram is a hierarchical, binary tree in which each branch represents a
cluster. (Strictly, it need not be binary; in the rare case of ties, a node can have more
than two children.) Ultimately, at the leaves of the tree, each observation becomes its
own cluster. The clustergram is a nonhierarchical tree. The number of branches varies
and can be as large as the number of clusters. For example, observations in one of the
clusters at x = 10 can branch out into any of the 11 clusters at x = 11. We have only
looked at up to 20 clusters. If one were to continue to increase the number of clusters
up to the point where the number of clusters equals the number of observations, then
at the leaves, each cluster would consist of only one observation.
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The clustergram differs from the dendrogram as follows: First, the layout on the
dendrogram’s horizontal axis is naturally determined by the tree (except for some free-
dom in whether to label a branch left or right). The layout of the nonhierarchical tree is
not obvious. We chose to use the mean to determine the coordinate. Other functions are
possible. Second, in the dendrogram, “distance” is used as the second axis. “Distance”
naturally determines the number of clusters. In the clustergram, we use the number
of clusters instead. Third, in a clustergram, the (nonhierarchical) tree is not usually
extended until each leaf contains only one observation. Fourth, in a clustergram, the
width of the parallelogram indicates cluster size. This is not necessary for the dendro-
gram. Because all leaves are plotted uniformly across the horizontal axis, the width of
the cluster already gives a visual cue as to its size.

The clustergram can be used for hierarchical clusters. If the dataset is small enough
to display a full dendrogram, a dendrogram is preferable because “distance” conveys
more information than “number of clusters”.
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