

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2002)
2, Number 3, pp. 314–329

Speaking Stata: On numbers and strings

Nicholas J. Cox
University of Durham, UK

n.j.cox@durham.ac.uk

Abstract. The great divide among data types in Stata is between numeric and
string variables. Most of the time, which kind you want to use for particular
variables is clear and unproblematic, but surprisingly often, users face difficulties
in making the right decision or need to convert variables from one kind to another.
The main problems that may arise and their possible solutions are surveyed with
reference both to official Stata and to user-written programs.

Keywords: pr0006, binary variables, categorical variables, Data Editor, dates, de-
code, destring, encode, identifiers, missing values, numeric variables, spreadsheets,
string functions, string variables, tostring, value labels

1 The great divide

Stata datasets are composed of variables, and those variables may take one or more
different types. What is more fundamental, however, is a division between two different
kinds. Numeric variables may be byte, int, long, float, or double, depending on
the number of bytes used for storage and whether values are held as integers or as real
numbers with fractional parts, or more precisely, as the binary equivalents or approxi-
mations to these. String variables hold character strings, those characters being broadly
alphabetic (such as "a" or "A"), numeric (such as "3" or "7"), or other (chiefly various
punctuation characters such as commas "," or (a very important example) spaces " ").

As a small matter of history, Stata’s variable types were not all available from the
beginning. Stata 1.0 was released in January 1985. Originally, variables could only be
numeric, although value labels were possible. String variables were introduced in Stata
2.0 in June 1988, and they could hold any even number of characters from 2 (str2 type)
to 80 (str80 type). Thus, a single character would need to be held in a str2 variable.
Odd numbers of characters in string variables were soon allowed in Stata 2.1, which was
released in September 1990. At the same time, the byte type was introduced to join the
existing numeric types of int, long, float, and double. The next major change was
not until February 2002, when Stata/SE, a between-releases “Special Edition”, raised
the limit for string variables to 244 characters.

Distinctions between different string types and different numeric types can be crucial,
depending on the trade-off between holding all detail accurately enough and not using
so much filespace or memory that operations become inordinately slow (or in extreme
circumstances, even impossible). It is wasteful of memory, and, even if available memory
is not limiting, it is wasteful in processing time to hold variables in types larger than is
necessary. Conversely, the opposite pitfall should be clear: you can truncate or otherwise
lose information with a variable type that is too small, or more generally, inappropriate.

c© 2002 Stata Corporation pr0006

N. J. Cox 315

You cannot fit a value such as "New York" in a str7 variable, and you cannot fit 3.14159
in an int, as that dish is not right for holding that pie.

Three commands help in managing allocation of data types. For more information,
see their manual entries in the Stata Reference Manuals; noting that replace is docu-
mented in [R] generate. compress is an easy and safe way of reducing memory use. It
often produces much smaller datasets, yet never loses information. replace is generally
smart in promoting variables whenever that is needed. A variable that starts out in
life as an int containing smallish integers will be changed to a float if calculations
in a replace introduce fractional parts. A string variable will be promoted whenever
it gets too long as the result of a replace, subject to the upper limit associated with
your executable (in Stata/SE 7.0, 244 characters and in Intercooled Stata 7.0 and Small
Stata 7.0, 80 characters). recast is occasionally useful for upward promotions (and
dangerously, when desired, demotions using its force option).

These commands provide ways of achieving changes of type, from one numeric type
to another or from one string type to another, but none allows change across the great
divide, from numeric to string or vice versa. Crossing this divide is our main concern
in this article. Not surprisingly, the main solutions occur in pairs, depending on the
direction of crossing, which helps to make sense of the variety of methods that exist.

Useful background for this article is given in various chapters of the Stata User’s
Guide, especially [U] 15 Data, [U] 16 Functions and expressions, [U] 26 Com-
mands for dealing with strings, and [U] 27 Commands for dealing with dates.

2 Numbers or strings?

2.1 Introduction

If you want to do numeric calculations in Stata with a variable, it should be numeric.
Normally that would be your natural choice, and normally only by mistake will variables
that should be numeric start out as string. (Such “mistakes” are more common than
you might think, as you may already know; more will be said later, especially in Section
5.) Despite its many uses for managing many kinds of datasets, even databases, Stata is
primarily statistical software, and so almost all users deal mostly with numeric variables.

However, the opposite rule—if you have information in the form of nonnumeric
characters, it should be held as string variables—does not always apply. Another way
to hold the nonnumeric information is as value labels linked to integer values of a numeric
variable.

2.2 Choosing the right kind

What influences or determines the choice?

316 Speaking Stata

1. If the nonnumeric information you have defines categorical variables, especially if
the number of categories is typically much fewer than the number of observations,
it is best to use value labels. This is more efficient for storage and improves
use of memory and processing time. In addition, some commands may not be
applied to string variables, even when that might appear sensible; for example,
you cannot use graph on string variables to get something like a histogram. In
cases like this, the error message is typically no observations, meaning precisely
that no numeric values are specified. To get such a graph, you need to produce the
equivalent numeric variable with the nonnumeric values as value labels attached
to integers.

2. If anything, the case for doing this is even stronger with binary variables, which you
may also know as Boolean, dichotomous, dummy, indicator, logical, or quantal,
depending on your upbringing. Whatever the name, they take on just two values,
other than missing. As is well-known, a binary variable, especially one assigned
values 0 and 1, may be used in many analyses: its mean has a direct and simple
interpretation as a proportion, it may be used as a response variable in logit
and probit models, and so on. All this, however, depends on a binary variable
being held as numeric. (In passing, I commend the practice of naming a 0-1 binary
variable for the category coded 1. If sex is 1 for female and 0 for male, then female
is a better name. Which way round the coding is becomes more transparent.)

3. However, there are limits (in Stata/SE and Intercooled Stata 7.0, 65,536; in Small
Stata 7.0, 1,000) on the number of value labels you may define that may be
associated with a variable. If you have more than 65,536 categories, you are more
likely to be dealing with individual identifiers than with classes of a categorical
variable. An identifier is a name or a code that identifies people (places, businesses,
whatever) uniquely, even if it is repeated in different observations, as in a panel
dataset. But, whatever your situation, the limit in the version of Stata you are
using is an unbreakable law, and so beyond that limit, nonnumeric identifiers must
be held as string variables.

4. Apart from the question of limits, unique identifiers will often conveniently be
held in string variables. There is little point in defining a value label if that value
label occurs only once. It is also less likely that you would want to use such a
variable as defining one axis of a graph.

5. Less obviously, identifiers that consist entirely of numeric codes are often better
held as string variables. U.S. Social Security Numbers (SSNs) are one of the most
frequently discussed examples on Statalist. They consist of nine digits, commonly
written as three fields separated by hyphens with the form aaa-gg-ssss; these fields
are in turn the area number, the group number, and the serial number. When
stored without hyphens, these SSNs can be read into Stata as numeric variables,
but small problems often arise later. More generally, to hold multi-digit identifiers
without numeric precision problems (that is, holding every digit exactly) may
require the use of a long variable. To display such a variable (as with list)
may require changing format to avoid most digits being lost whenever identifiers

N. J. Cox 317

are presented in scientific notation. (See [R] format.) For example, a float
numeric variable set equal to 123456789 will by default be listed as 1.23e+08,
shorthand for 1.23 × 108. These are small and soluble problems, but they often
cause puzzlement to Stata users. Holding such identifiers as strings, even though
every character is numeric, solves those problems, with no apparent downside.

6. Similarly, categorical codes that are multi-digit numbers are often constructed
hierarchically. That is, successive digits take you to finer detail within some
classification system with numerical codes (of diseases or occupations or products,
say). When such codes are held as numbers, working from fine to coarse categories,
or vice versa, can be done by tricks with int() or mod(). These tricks strike
many users as neat when they are familiar, but indirect or obscure when they
are not. The corresponding operations on such codes held as strings can be done
with substr() or index(), and these operations are often more transparent: the
first three digits of a string variable code are specified by substr(code,1,3), for
example.

Stata 7.0 includes a special command, icd9, for dealing with ICD-9 or ICD-9-
CM codes from the International Classification of Diseases, Ninth Revision or the
International Classification of Diseases, Ninth Revision, Clinical Modification. See
[R] icd9. In Stata, such codes must be held as string variables, because some codes
contain nonnumeric characters; even if that were not true, it would be better to
hold them as strings for ease of data processing.

7. Another important class of data is dates, especially daily dates, which come in a
variety of formats. A date recorded as (say) "21 January 1952" or "1/21/1952"
can be interpreted as numeric once there is some agreement on what is day 0:
Stata’s convention is 1 January 1960, so 21 January 1952 is −2902. From that
representation, we can easily find out, say, that 28 March 1952 was 67 days later,
and so answer that and many more interesting or useful questions. However,
variables with values like this can be read into Stata only as string variables: they
can be converted later to numeric dates, usually with the date() function. (For
more details, see [U] 27 Commands for dealing with dates.)

What might be called run-together dates with all digits numeric, say, 19520121
or 1211952, can be read in either as numeric or as string. As already mentioned,
a string representation has the advantage that precision and format problems are
less likely, so long as the string type is large enough. For all that, you are most
likely to want to convert dates in one of these representations to Stata dates. Such
conversion is at root a matter of separating the components of the run-together
dates and then combining them once more using Stata functions for both. At
present, official Stata lacks facilities for handling run-together dates as such, but
a user-written program may be accessed in an up-to-date Stata1 by typing ssc
describe todate.

1ssc was added to Stata 7.0 on 14 November 2001. If necessary, update your Stata
(see McDowell 2001). If you do not have Stata 7.0, but you do have Internet access,
http://www.stata.com/support/faqs/res/findit.html provides some explanation.

318 Speaking Stata

A run-together date such as 19520121 needs to be split into year, month, and
day variables and then put together using the function mdy(). The splitting is
at most three commands, which, if the date is held as string, all use the function
substr(). What todate does is wrap this all into one, using a pattern() option
to specify what the digits mean, so that

. todate date, gen(Date) pattern(yyyymmdd) format(%d)

performs the whole conversion to a Stata daily date variable. Half-years, quarters,
months, and weeks are also supported, as are incompletely specified centuries and
multiple variables.

8. Evidently, any nonnumeric characters in dates, such as slashes or month names, are
sufficient to imply that in the first instance the corresponding variables should be
held as string. More generally, any nonnumeric characters in otherwise numeric
fields are sufficient to make direct numeric representation impossible. So, for
example, a variable containing age intervals such as 0-9 or 10-19 must be held as
string or as numeric with value labels because of the included hyphens. That need
not stop approximate numeric equivalents from being computed, say, containing
the midpoint of each interval, or the endpoints being pried apart and put into
separate and equivalent numeric variables.

9. If you are typing in the data, either by yourself or with assistance, it may be much
less labor to enter data as numeric. Value labels may be specified either before
or later, and need only be typed once. (Sometimes, the associated value labels
may already be defined, or the same value labels may be associated with several
variables, as when a group of variables all record yes or no answers.) Saving of
effort is greatest to the extent that small integers can be entered rather than longer
strings.

10. A quite different consideration arises sometimes, especially when teaching. One
elementary error is to forget, particularly for statistical rather than data man-
agement commands, that a variable may be numeric to Stata without being a
variable which may fairly be included in a statistical model as is. It is arguable
that a habit of holding arbitrary numeric codes as strings provides some protection
against this blunder, helping you to avoid foolish statistics. In practice, however,
this will rarely be a deciding issue.

2.3 Missing values

A reminder of what counts as missing with numeric and string variables may be helpful
here.

Numeric missing in Stata is represented by a period ., which is always treated as
larger than any other numeric value. Thus, a sort of a numeric variable sorts missing
values to the end of a dataset.

N. J. Cox 319

String missing in Stata almost always means an empty or null string, "". An empty
string contains nothing (or does not contain anything, depending on your metaphysi-
cal predilections), whatever the type of string variable concerned. A sort of a string
variable sorts empty strings to the beginning of a dataset.

No special meaning is given by Stata to strings consisting of one or more spaces. If
you want such strings to be treated as missing, consider using replace with the trim()
function to reduce them to empty strings.

Occasionally, some commands treat ".", or even that together with any leading or
trailing spaces, as indicating missing. This is anomalous and deserves brief comment.

destring is a case in point, and in this instance, the anomaly can be justified. As
will be discussed in detail in Section 5, destring is for situations in which a variable
should be numeric, but is by mistake string. For example, suppose you typed a column
of data into Stata’s Data Editor, but by mistake typed a nonnumeric character in the
value for the first observation. (You may have been thinking of a header line, spreadsheet
style.) Thereafter, you typed numeric characters, including . for missing values. The
result of all this is that Stata interprets the column as a string variable, but that is
almost certainly wrong. destring feels free to interpret the string ".", or any string
that trim() reduces to ".", as really numeric missing. It is, not surprisingly, much
more circumspect about other nonnumeric characters.

Another exception is compare, introduced into official Stata 3.0 in March 1992. As
explained in [R] compare, this command, in deference to some users’ habits, under-
stands both "." as well as empty strings as indicating string missing. With perfect
hindsight, this broad-mindedness was perhaps a mistake, but it does very little harm
and is better left unchanged, just in case a change breaks someone’s long-standing do
files or programs.

Finally, note that the string() function, discussed in more detail in Section 4, yields
".", not "", as the string equivalent of numeric missing.

3 encode, decode, and their limitations

3.1 encode and decode: having it both ways

The first kind of conversion operations that we will look at are mappings back and forth
between string variables and numeric variables with value labels. encode produces a
new variable that is numeric with value labels from a string variable. decode produces
a new variable that is string from a numeric variable with value labels. See [R] encode.
Both commands generate new variables; the variable you start with remains in memory
unless you later drop it yourself. encode and decode, therefore, leave you with the
same information in a different form, for maximum flexibility. encode and decode were
introduced with string variables in Stata 2.0, and they remain basic Stata commands.
decode is perhaps less frequently used, but no matter: whenever an operation and its
inverse both make sense, there is an excellent case for including both in Stata. As

320 Speaking Stata

explained in [R] encode, decode can be very useful for match merging two datasets on
a variable that has been encoded inconsistently.

Both commands work only on one variable at a time. Use of either on several
variables might be accomplished best with the help of foreach, as explained in my
previous column (Cox 2002a). Suppose we want to encode variables a, b, c, d, and e.
Here is a simple way of doing that, yielding Na, Nb, Nc, Nd, and Ne:

. foreach v in a b c d e {

. encode ‘v’, gen(N‘v’)

. }

3.2 Alphanumeric ordering and how to avoid it

One important detail is that by default, encode uses alphanumeric (i.e., ASCII) order
of string values to determine the order of integer codes. In the absence of any other
information, this is surely the best systematic way of carrying out the mapping. There
are downstream consequences, however: the alphanumerically ordered value labels are
usually uppermost in tables, on graphs, and in other output, and this order remains
wired into the association between integers and value labels. It is often, indeed, the
order that you want. Grades "A" "B" "C" "D" "E" are mapped to 1 2 3 4 5 and
tabulated in that order, which will often be fine (although also computing (6 − grade)
might be useful for calculations). But, perhaps equally often, an alphanumeric order is a
nuisance, because it fails to respect some inherent meaning. String values "excellent",
"good", "fair", "poor", and "bad" belong in that sequence, and not sorted into "bad",
"excellent", "fair", and so forth.

The most general solution to the problem of arbitrary alphanumeric order is to write
the order you want into a set of value labels defined before the encode, and then to
specify that encode uses those mappings. Thus,

. label def opinion 1 "excellent" 2 "good" 3 "fair" 4 "poor" 5 "bad"

. encode answer, gen(opinion) label(opinion)

obliges Stata to ignore its default ordering and to follow the one you prefer.

Alphanumeric ordering may bite in a manner that is puzzling until you recall pre-
cisely what such ordering means. Thus, age categories in ten-year intervals "0-9"
"10-19" . . . "90-99" will remain in this evidently natural order on alphanumeric or-
dering. But split "0-9" into "0-4" and "5-9", and add "100-109", and you will find
that "5-9" will be sorted after "40-49" and that "100-109" will be sorted before
"20-29". This is easy to explain. Although the ten numeric digits—in numeric order 0
through 9—have the same alphanumeric order when represented as numeric characters
"0" through "9", all strings when sorted are ordered as in a dictionary, so that ties are
broken on successive characters without any reference to their meaning. Once more,
the best solution to avoid an unsatisfactory result from encode is to use a predefined
set of value labels codifying your desired order.

N. J. Cox 321

3.3 Start 1 encoding and how to avoid it

encode by default starts integer coding at 1. Sometimes you would prefer 0 as a start,
especially for binary variables. One way to achieve this is by specifying the desired value
labels ahead of the encode, as in the previous examples.

Retrospectively, fixing the values of a start 1 variable to start at 0 by subtracting 1
is easy enough. The fiddly part is fixing the value labels to match. If you need to do this
a lot, two possible user-written tools are labedit (Gleason 1998, 1999) and labvalch
(type ssc desc labutil).

Concretely, suppose you had a variable female coded as 1 and 2, and you decide
that this would be better coded as 0 and 1. You could just

. replace female = female - 1

or, if you are familiar with recode (see [R] recode), you might prefer

. recode female 1=0 2=1

but neither does anything to any value labels attached to female. If they also need
fixing, the slow but sure way is just (supposing they have the same name as the variable)

. label define female 0 "male" 1 "female" 2 "" , modify

noting the detail of deleting the label for 2 by setting it to an empty string. The way
to do this with labvalch is

. labvalch female, from(1 2) to(0 1) delete(2)

which for just one variable is no gain. But for several sets of value labels, all to be
shifted from start 1 to start 0, there could be a payoff:

. foreach lbl in female married employed retired yesno {

. labvalch ‘lbl’, from(1 2) to(0 1) delete(2)

. }

3.4 Ordering classes according to another variable

Defining a choice of labels by explicitly typing a label define before an encode is not
ideal for all situations. One common problem is that we want an ordering of classes
according to their values on some other variable, so that a table or a graph will then
show a more intelligible pattern, cutting free of the arbitrariness of the alphabet. Some
Stata programs do this for you on the fly, but we still need to be able to do it for
ourselves whenever no such program exists for a particular task. This problem can arise
for any categorical variable, whether represented by a string variable or by a numeric
variable with value labels.

322 Speaking Stata

Concretely, we might want categories ordered according to their associated frequency,
or on the mean or maximum of some other variable. Again, we could compute the
ordering criterion directly and use the results to identify an appropriate set of value
labels, which we then type out in a label define, but let us see if we can automate
most of that. In this kind of problem, the devices used most often vary from solutions
from first principles using by: (Cox 2002b) to canned egen functions (see [R] egen).
(The fact that egen includes several functions applicable to string variables is often
overlooked.)

With the auto data, let us define the manufacturer name as the first word of make,
and then count values by manufacturer:

. egen manuf = ends(make), head

. bysort manuf : gen freq = -_N

Note the minus sign. We are looking ahead, and foreseeing a sort, and, in particular,
foreseeing that we will want highest values first, so that they will appear (say) as the first
rows of a table or the left-hand bars of a bar chart. That order is thus the opposite of
Stata’s default sort order in which lowest values come first; negating values will reverse
the order for us. (Naturally, if the default sort order is what you want, you should omit
the minus sign.)

Now we want to put the categories of manuf in the order defined by freq. Another
egen function is very useful here.

. egen group = egroup(freq manuf), label(manuf)

egroup() produces the distinct categories defined by its arguments, in their (joint)
sort order. The results are successive integers from 1 up, guaranteed (for example) to
yield tidy graphs. egroup() here has two arguments. freq is mentioned first, because
our main ordering is to be by frequency. manuf is mentioned next to ensure that any
ties on freq are broken properly (for example, there are 7 Buicks and 7 Olds: 14 values
thus have freq equal to 7, which must be split into those two groups).

egroup() is a user-written extension of official Stata’s egen, group(). (To access,
type ssc desc egenmore.) The extension itself is just one extra wrinkle: the option
label may take an argument, lblvarlist, which specifies that we want the new variable
to have value labels that are the values (or the value labels if they exist) of lblvarlist. By
contrast, the label option of group(), which takes no argument, uses all the variables
in the varlist supplied to group() to construct value labels. With these data, we would
have labels like "-7 Buick", the -7 coming from the frequency, negated. Clearly, we
want only the manufacturer names in the labels.

(Continued on next page)

N. J. Cox 323

. tab group

group(manuf) Freq. Percent Cum.

Buick 7 9.46 9.46
Olds 7 9.46 18.92

Chev. 6 8.11 27.03
Merc. 6 8.11 35.14
Pont. 6 8.11 43.24
Plym. 5 6.76 50.00
Datsun 4 5.41 55.41
Dodge 4 5.41 60.81

VW 4 5.41 66.22
AMC 3 4.05 70.27
Cad. 3 4.05 74.32

Linc. 3 4.05 78.38
Toyota 3 4.05 82.43

Audi 2 2.70 85.14
Ford 2 2.70 87.84

Honda 2 2.70 90.54
BMW 1 1.35 91.89
Fiat 1 1.35 93.24

Mazda 1 1.35 94.59
Peugeot 1 1.35 95.95
Renault 1 1.35 97.30
Subaru 1 1.35 98.65
Volvo 1 1.35 100.00

Total 74 100.00

There are two (and perhaps a half) basic steps here, but the method is quite general.
First, generate the variable on which you want to order classes as a group statistic.
Remember negation if you want to reverse the order. Second, use egen, egroup()
label() to produce the groups in the right order and with the right labels. These steps
produce a variable that may then be used for tables, graphs, etc.

4 real() and string(): the brute force solutions

There are brute force methods of crossing the divide. The function real() extracts
the numeric content of a string expression, such as a string variable. The function
string() converts a numeric expression, such as a numeric variable, to a string. The
documentation for some software talks of coercion from one type to another. Although
that is not a common term in discussing Stata functions, it captures well the flavor of
what is discussed in this section.

Given any doubt, real() yields numeric missing. Therefore, watching carefully for
messages about missing values is always worthwhile. Having a look at the problem
observations may reveal some problems with easy fixes, or at least a variable better
tackled with destring (see Section 5). For example, real("1,234") yields numeric
missing. The intelligence that strips the comma is not built in to the function. More
generally, given string variable strvar, which contains mostly numeric information, these
inspections should pinpoint what cannot be interpreted as numeric:

324 Speaking Stata

. tabulate strvar if real(strvar) == .

. list strvar if real(strvar) == .

The brute force may seem to lie on one side. Although not all characters are numeric,
surely all numeric characters are characters. Nevertheless, the companion function
string() is also fairly described as a brute force solution, for the same fundamental
reason: without some forethought, it is possible to miss information in your data. Nine-
digit identifiers such as U.S. Social Security Numbers provide a simple but forceful
example. string(123456789) yields "1.23e+08", meaning 1.23 × 108. The key detail
needed is that string() is really a function taking two arguments, the second of which is
a numeric or date or time format. string(123456789, "%12.0g") yields "123456789"
in the way that you would expect. The point is simply that the default format is not,
and cannot be, ideal for all circumstances.

For simple cases, real() and string() may perform perfectly well, but beware their
brutality when data are more complicated than you realized.

5 destring and tostring: correcting mistaken choices

5.1 Learning from history

As we have seen, the main solutions to problems with the great divide occur in pairs, a
pair for each operation and its inverse. The last pair we will look at is the official Stata
command destring and its sibling, the user-written command tostring. destring has
the longer history. After publication and revision in the Stata Technical Bulletin (STB)
(Cox and Gould 1997; Cox 1999a, 1999b), it was adopted in official Stata in version 7.
tostring came later (Cox and Wernow 2000a, 2000b).

The history of destring has no practical implications, except for any users who
started with the STB version and became accustomed to the ways in which it worked,
but it raises major issues to do with command design. When destring was incorporated
in official Stata, it was largely rewritten to produce a more focused command. Why
was that?

First, the original destring command violated Stata’s philosophy in that it was too
easy to change much of your dataset without the safeguard of having to spell out some
injunction such as “, replace”. destring now not only insists on that, it also obliges
you to specify force whenever the creation of a numeric variable would lose information
contained in the original string variable.

More specifically, destring allowed a variable to be replaced by an encoded equiva-
lent, unless users specifically opted out of that. Positively, it offered the power to solve
several dataset problems with no more than a single destring (no variable list, no
options). Existing numeric variables would be unchanged, string variables with purely
numeric content would be replaced by their numeric equivalents, and other string vari-
ables would be encoded if possible. But, by the same token, this made it too easy to
misunderstand what had been done, with all sorts of further consequences. If x were

N. J. Cox 325

string with numeric content, then summarize x is a perfectly reasonable thing to type
after destring. If x were string with no numeric content, and as such was encoded,
then summarize x is all too likely to be wrong or meaningless. If the price of liberty is
eternal vigilance, then in the case of the original destring, it was bought too dearly.

What underlies all this is a general principle: it is best when Stata commands do one
thing well. In retrospect, it was a bad idea to let destring overlap in functionality with
encode. On adoption in Stata 7.0, therefore, it was decided to sharpen the distinction
between them. encode is designed for situations in which you have a string variable
containing nonnumeric text (e.g., "male", "female"), and wish to have the equivalent
information as a numeric variable with labels. destring is designed for situations in
which you have a string variable containing numeric text (e.g., "1", "2"), which you
wish to convert to the numeric variable that it should properly be. Usually, that variable
is now string because of some mistake. How could such a mistake be made?

5.2 Mistaken string variables

Stata’s Data Editor

One way in which a mistake can arise is when entering data into Stata’s Data Editor (see
[R] edit). Some users, especially if new to Stata and accustomed to the license provided
by spreadsheets, may type header information, say, a column title or explanatory text,
into the top rows of the editor. To Stata, however, these rows define the first few values
of its variables; its rule is that all cells in any given column must be of the same variable
type.

Just the first observation can be crucial in interacting with the Data Editor, which
attempts to be as smart as possible and to divine your intentions from what you type.
Enter any nonnumeric text in the first cell of a column, and the editor instantly thinks,
“Aha! This user wants this variable to be a string variable”, and it promptly and
silently creates that variable as string. Even if all cells below are entered with numeric
text, this causes edit no puzzlement, as numeric characters are perfectly acceptable in
a string variable. The editor will silently promote a string variable to a wider type if
later values require that. However, the editor will never unilaterally change a variable
of yours from string to numeric, or from numeric to string, and the same holds for all
other Stata commands. To do that would entail guessing at what you really intend,
with the possibility of making an incorrect guess and making a mess of your dataset.
To do that could seriously compromise the integrity of your data.

This is a strong principle, which can admit no exceptions, even though the conse-
quences may be irritating. Suppose, for example, that the mistake lay only in a first row
of text values across a dataset, defining the first observation. Realizing your mistake,
you simply delete the first row. Now, perhaps most—or even all—of the columns in the
editor contain purely numeric text, for the simple reason that they were all intended
to contain numeric variables. Should the editor change its mind, and change these
variables unilaterally to numeric? No. For all the editor knows, you really wanted the

326 Speaking Stata

numeric text to be a string variable. After all, Section 2 gave several good reasons for
storing numeric text in a string variable. More generally, Stata should not be in the
business of making guesses about your data, or of assuming that it knows better than
you do precisely what you intend your data to be. It follows that you must specify your
intentions explicitly, using destring.

Naturally, edit’s principle that first impressions count is not the only basis on which
it could have been designed. However, a data editor in which you were obliged to specify
a variable type before a variable was entered would not have the friendliness and freedom
of action that one might fairly expect.

Spreadsheets and other software

The same kind of issue can arise when importing data from spreadsheets, from other
application programs (say, under Windows, by way of the clipboard), or from ASCII

files created by these programs, by text editors, or by word processors. Spreadsheets
provide good examples of some of the possible difficulties that lead to mistaken string
variables. The same or similar problems can also occur with other programs or their
creations, which might be read in with a command like insheet. (See [R] insheet.)

Some of these problems depend on which software you are using. A list of various
pitfalls that have been reported thus far may, with good fortune, include some that will
never open up before you.

1. A single cell in a column containing a nonnumeric character, such as a letter, is
enough for Stata to treat that column as a string variable. As implemented in
Stata 7.0, destring includes an option for stripping commas, dollar signs, percent
signs, and other nonnumeric characters. It also allows automatic conversion of
percent data.

2. What appear to be purely numeric data in a spreadsheet are often treated by Stata
as string variables because they include spaces. You, or whoever created your data
file, may inadvertently enter space characters in cells that are otherwise empty.
Although a spreadsheet may strip leading and trailing spaces from numeric entries,
it will not trim spaces from character entries. One or more space characters by
themselves constitute a valid character entry and are stored as such. Stata may
dutifully read the entire column as a string variable. If so, you could delete such
stray spaces in the spreadsheet, or you can use a text editor or scripting language
on an exported text file, or again you could use destring.

3. Much formatting within a spreadsheet interferes with Stata’s ability to interpret
the data reasonably. Just before saving the data as a text file, make sure all
formatting is turned off, at least temporarily.

4. With integer-like codes such as ICD-9 codes or U.S. Social Security Numbers that
do not contain a dash, leading zeros will get dropped when you paste into Stata.
One solution is to flag within the first line that the variable is string: add a

N. J. Cox 327

nonnumeric character in your spreadsheet on that line, and then remove it in
Stata. Alternatively, the missing leading zeros can be replaced in Stata in a
conversion to string:

. gen str12 strvar = string(numvar,"%012.0f")

The second argument on the right-hand side of this command is a format specifying
display of leading zeros in conversion of numvar to its string equivalent. See
[R] format.

5.3 Mistaken numeric variables

destring has a sibling, tostring, for the less common situation in which you decide
that the information held in numeric variables really should be held in string form. As
discussed in Section 2, this need arises most commonly when the numeric variable is
really an identifier of some kind, or a complicated categorical code, and you wish to
carry out string manipulations using Stata’s string functions.

tostring is essentially a convenience command, with various features, including
automatic determination of which string type is needed; a default format (%12.0g)
better suited to integers, whether held as byte, int or long; and the ability to work
with several variables at once. Conversely, some features are, in retrospect, bad, or at
least arguable, choices, and will be withdrawn in future versions: being able to decode;
being able to overwrite existing variables without specifying “, replace”; and being
able to ignore details (especially in fractional parts) without specifying a force option.

6 Statistically defined variable types?

It will be clear by now that the distinctions between Stata’s variable types are based
mainly on computing distinctions, rather than any statistical or other distinctions based
on the scales of measurement used, the roles played by variables in statistical models, or
similar considerations. In particular, categorical variables may be held in quite different
ways within Stata. Stata does show a marked preference that they be held in numeric
variables with value labels attached, insofar as that allows the widest possible range of
commands to be used, but for some purposes, it is also a good idea to hold the same
information in string form.

Concretely, Stata has (for example) no exact equivalent to the ideas of factors or
to ordered factors available in S, S-Plus, or R (see, for example, Chambers and Hastie
1992). What may seem at first an exception to this assertion, the category() and
continuous() options of anova (explained in [R] anova), is in fact a demonstration of
it; that is, anova requires a specification of how it is to treat variables. It has no way
of knowing from the information stored by Stata how variables are to be interpreted.
Also, this specification is purely for the moment, and has no consequences for any future
commands, except those that process output from the model just fitted. On occasion,
when the best way to treat some variable (say age) is in doubt, anova commands could

328 Speaking Stata

even treat a variable as in turn categorical and continuous, in a bid to identify the better
representation. What Stata gains and what it loses from this way of treating variables
makes a topic for interesting future discussions.

7 Summary

The variety of routes that cross the great divide between numeric types and string
types in Stata may be reduced to intelligible order, despite some mistaken ventures by
pioneers. Use decode or encode to generate new variables of different kinds holding
the same information. Use real() and string() for conversions or coercions, checking
each time on whatever cannot be coerced to different kind, and is thus assigned missing.
Use destring or tostring to correct mistakes whenever you have variables of one kind
that really should be of the other kind.

8 What’s next?

In the next column, we will look at the confusing territory stretching from built-in
functions to egen functions. In engineering terms, the range is from ‘black boxes’ (you
cannot look inside) to ‘white boxes’ (you can look inside and borrow ideas). Even with
the large and growing number of functions that they provide, there will always be gaps,
so the key question of how best to fill those gaps for yourself will also be discussed.

9 Acknowledgments

Some of the work reported here benefited greatly from the collaboration and comments
of William Gould, Jeremy Wernow, and Vince Wiggins. Material on spreadsheets is
based partly on an FAQ to which contributions were made by Ted Anagnoson, Dan
Chandler, Ronan Conroy, James Hardin, David Moore, Paul Wicks, and Eric Wruck.

10 References
Chambers, J. M. and T. J. Hastie. 1992. Statistical Models in S. Pacific Grove, CA:

Wadsworth and Brooks/Cole.

Cox, N. J. 1999a. dm45.1: Changing string variables to numeric: update. Stata Tech-
nical Bulletin 49: 2. In Stata Technical Bulletin Reprints, vol. 9, 14. College Station,
TX: Stata Press.

—. 1999b. dm45.2: Changing string variables to numeric: update. Stata Technical
Bulletin 52: 2. In Stata Technical Bulletin Reprints, vol. 9, 14. College Station, TX:
Stata Press.

—. 2002a. Speaking Stata: How to face lists with fortitude. Stata Journal 2(2): 202–222.

N. J. Cox 329

—. 2002b. Speaking Stata: How to move step by: step. Stata Journal 2(1): 86–102.

Cox, N. J. and W. W. Gould. 1997. dm45: Changing string variables to numeric. Stata
Technical Bulletin 37: 4–6. In Stata Technical Bulletin Reprints, vol. 7, 34–37. College
Station, TX: Stata Press.

Cox, N. J. and J. B. Wernow. 2000a. dm80: Changing numeric variables to string.
Stata Technical Bulletin 56: 8–12. In Stata Technical Bulletin Reprints, vol. 10,
24–28. College Station, TX: Stata Press.

—. 2000b. dm80.1: Update to changing numeric variables to string. Stata Technical
Bulletin 57: 2. In Stata Technical Bulletin Reprints, vol. 10, 28–29. College Station,
TX: Stata Press.

Gleason, J. R. 1998. dm56: A labels editor for Windows and Macintosh. Stata Technical
Bulletin 43: 3–6. In Stata Technical Bulletin Reprints, vol. 8, 5–10. College Station,
TX: Stata Press.

—. 1999. dm56.1: Update to labedit. Stata Technical Bulletin 51: 2. In Stata Technical
Bulletin Reprints, vol. 9, 15. College Station, TX: Stata Press.

McDowell, A. 2001. From the help desk. Stata Journal 1(1): 76–85.

About the Author

Nicholas Cox is a statistically-minded geographer at the University of Durham. He contributes
talks, postings, FAQs, and programs to the Stata user community. He has also co-authored
eight commands in official Stata. He was an author of several inserts in the Stata Technical
Bulletin and is Executive Editor of The Stata Journal.

