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Efficient Estimation of Copula Mixture Models:  

An Application to the Rating of Crop Revenue Insurance 

 

 

Abstract 

                                                            

The association between prices and yields are of paramount importance to the crop insurance 

programs. Proper estimation of the association is highly desirable. Copulas are one such method to 

measure the dependence structure.  Five single parametric copulas, a non- parametric copula and their 

fifteen different combinations taking a mixture of two different copulas at a time have been used in the 

crop insurance rating analysis. Using data of corn from 1973-2009 for 602 counties in the Mid-West area 

two different efficient methods have been proposed to generate the optimal mixtures using the cross 

validation approach. A resampling technique is used to check for the significance of the expected 

indemnities. 

Key Words: Copulas, Crop Insurance, Cross-Validation, Empirical distribution, GRIP, Indemnities, 

                     Out-Of-Sample Log-Likelihood 

JEL  Code: Q1,Q14 
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Introduction 

Crop insurance is of critical importance in the farming business to properly address production or revenue 

shortcomings for farmers or crop producers. Correct estimation of the revenue distribution is of 

paramount importance in analysis of issues in crop insurance and risk management. The producers’ 

revenue depends on the price and yield distributions and the correlations between the prices and yields. 

There are different ways to account for the correlation structure between prices and yields. The copula is 

one such method. It is quite obvious that if we do not take into account the correlation between any two 

random variables (in this case price and yield) a bias would result in the expected revenue estimation. The 

pricing of the indemnities thus would also give improper results. Indemnities for crop insurance refer to 

the payment of the insurance companies to the producers whose revenue falls short of a guaranteed 

revenue.  

Thus, the objective of this paper is to use six different copulas like kernel, Gaussian, t, frank, gumbel, and 

clayton and also their fifteen different mixtures to model the joint distributions of prices and yields. In 

order to find out the optimal mixtures two different efficient methods has been used , the minimization 

objective and the logliklihood approach both in the out of sample framework.  

The association between prices and yield has been there in the agriculture economics literature for a long 

time. However modeling joint distributions using copula has been a recent addition to the agriculture 

economics literature. Previously different methods were used to check for association between two 

random variables. Under regressibility assumption with two random variables, one variable can be 

expressed as a linear function of the other variable. The beta coefficient then becomes  

 y

x

y x  


 



  


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The ρ is just a linear association between the variables. It does not take into account non-linearities 

between the two random variables. It is a poor measure of dependence. Furthermore, if the uncorrelated 

random shocks are assumed normal, regressibility amounts to joint multivariate normality, an assumption 

crop yields typically violate (Ramirez, Misra and Field, 2003). 

 Several papers recognize the limitations of the above procedure and go for ad hoc procedures to model 

the dependence structure. It involves Choleski decomposition of the matrix or in other words they involve 

transformations of the multivariate normal distribution with the parameters estimated from the data 

(Ramirez, 1997). It allows greater flexibility in modeling joint distribution but relies on the assumption 

that the correlation matrix contains all necessary information about the dependence structure. 

A multivariate empirical distribution is also used for modeling joint distributions without imposing any 

distributional assumption (Deng, Barnett and Vedenov, 2007). The disadvantage with this method is that 

they are limited to the observed realizations and results in discontinuous density functions which could be 

problematic in the insurance contracts. 

Copulas 

Copulas are just alternative ways to model joint distributions of random variables. 

The advantage of the copula method is the flexibility of choosing the marginal distributions as well as the 

non-linearity between the random variables is captured rather than linear dependence structure in the 

regression models.  

A two dimensional copula distribution C(u,v) is defined as a function   ,   -  ,   - . In other words, 

C is a bivariate distribution function with uniformly distributed marginals u and v. C(.) has the following 

properties: 

 (   )   (   )                ,   - 

 (   )         (   )                ,   - 

 (     )   (     )   (     )   (     )                 
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Copulas are related to joint bivariate distributions by virtue of Sklar’s Theorem. The theorem states that 

any joint distribution function H(x,y) with margins F(x) and G(y) can be represented as   

 

                                                                   H x, y C F x ,G y .  

 

where C(.) is a uniquely determined copula function. If the random variables x and y have continuous 

distribution functions, F(x) and F(y), then by probability integral transformation u=F(x), v=F(y) are 

uniformly distributed on [0,1]. If the distribution functions and the copula are continuous Sklar’s 

Theorem can be stated in terms of probability densities.  

                               

                                                       ( , ) ( ( ), ( ))* ( )* ( )h x y c F x G y f x g y  

where             
2 2

' '( , ) ( , )
, ,    ,  ,    ,

H x y C u v
h x y f x F x g y G y and c u v

x y u v

 
   

   
            

    

There are different kinds of copulas in the literature. The most common are the Gaussian copula, student t 

copula and three copulas from the Archimedean family. 

 

 

Gaussian Copula:  

 
1 1

1 2 1 2( , ) ( ( ), ( ))GaussC u u u u 
                                         (1)

                                  

where    is the bivariate normal distribution correlation matrix  , and 
1( )iu  is the inverse of the 

normal cumulative distribution function. 

Students ’t Copula: 
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' 1 1

1 2 , 1 2( , ) ( ( ), ( ))Student st

v v vC u u T t u t u ρ ρ                                                       (2)
  

Where 
,vTρ  is the bivariate student-t distribution with correlation matrix   and degrees of freedom  . 

1( )v it u
 is the inverse of the Student –t  cumulative distribution function. 

Archimedean Copula: 

  

 
2

1

1 2

1

( , ) ( )m

m

C u u u 



 
  

 
                                                                          (3)  

The three different Archimedean families are Clayton, Frank and Gumbel . Each of the different copulas 

has different association parameters embedded within them, that is, not necessarily they are Pearson’s 

correlation parameter rho.    

Elliptical copulas (Normal or Student-t) are restricted to radial symmetry and don’t have a closed 

form. For the Archimedean family lower tail dependence is captured by the Clayton family for θ 

(parameter)>0. Upper tail dependence is captured in the Gumbel family for θ>1 which due to its 

parameter space holds only for positive co dependence. Yet, the proper shape of some true underlying 

copula may not be adequately described by a single parametric copula form. Along with these parametric 

copulas the non- parametric copulas (e-g kernel copulas) also exist. However, non-parametric copulas 

have the potential to overfit to observed data, potentially resulting in lower estimation efficiency.  

 To date, copulas have primarily been viewed in a single copula context, and only within ―in-

sample‖ fitting frameworks.  Noting that a copula is no more than a multivariate distribution with uniform 

marginals, the potential thus exists to mix copulas of different forms in order to reduce estimation bias.  

Furthermore, just as the ranking of univariate distributions are subject to ―in-sample‖ overfitting—which 

can lead to erroneous conclusions regarding the ranking of distributional forms in empirical settings ( e.g., 

Norwood, Roberts, and Lusk, 2004)—the potential also exists to cast the ranking and fitting of copulas in 

―out-of-sample‖ efficient frameworks. In their study, NRL(2004) suggested the out-of –sample log 



7 
 

likelihood functions (OSLL), where OSLL realizations are constructed by successively estimating the 

yield distribution model with holdout observation(s) and then evaluating the predicted density value at the 

out of sample observation(s). The method is popularly known as cross validation method (CV). The 

candidate distributions are then evaluated based on their log likelihood values.  

 With these issues in mind, this study proposes a copula mixing procedure based on out-of-sample 

criteria, extending the recent work of Woodard and Sherrick (2010)—which develops an ―out-of-sample‖ 

efficient method for the mixing of univariate distributional forms—to the copula case. The mixing 

procedure is carried out by assigning weights  between 0 and 1 to each of the single copulas to obtain the 

copula mixture. The model that results from this procedure is a mixed distribution composed of multiple 

underlying distributions of different classes-in this case the copula. It results in a form which is out of 

sample efficient and can express higher degree of flexibility than any single underlying model alone.  

Thus, the novelty of this paper is to develop a copula mixing procedure and numerically derive and 

compare generated insurance rate distributions under several different copula forms (Gaussian, Student-t, 

Gumbel, Clayton, Frank, Kernel) and their mixtures in order to assess the statistical and economic 

significance of differences among copula alternatives.  A popular group risk insurance contract is used as 

the basis of the application for several major crops and regions.  Preliminary results suggest that the 

choice of copula can have a large impact on the pricing of revenue insurance in some cases for this 

insurance product, and that the mixing procedure shows promise for ameliorating inefficiencies endemic 

to simple in-sample modeling frameworks. The results from our analysis (Table 7) shows a huge 

difference between the rates generated from the Gumbel copula and the rates generated from the optimal 

mixture between Gumbel-Clayton at all levels of coverage.  

Group Risk Insurance Policy (GRIP) 

Crop Revenue Insurance programs that deal with county yields and revenues are called Group Risk 

Insurance Policy (GRIP). GRIP is revenue insurance paying indemnities when county revenue is below a 
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revenue guarantee. GRIP has two options: GRIP without the harvest revenue option (GRIP-NoHR) has a 

guarantee that will not increase while GRIP with the harvest revenue option (GRIP-HR) has a guarantee 

that will increase if the harvest price is above the base price . 

 ,   *
   ( 0,  *1.5

   *  /  

Max BasePrice HarvestPrice
GRIP HR Indemnity Max

Ybar HarvestPrice y Cov

 
   

 
                            (4) 

 

 

 ,   *
(  ) *1.5 ( , )

   *  /  

Max BasePrice HarvestPrice
E GRIP HR Indemnity f p y dpdy

Ybar HarvestPrice y Cov

 
   

 


             (5) 

where Ybar is the expected county yield,  Base Price is the average of the December futures prices in 

February, Harvest Price  is the average of the December futures prices in October, Cov is the coverage 

levels, y is the county yield and the leverage factor is 1.5 

To estimate the joint density ( , )f p y  in the GRIP model the different copulas Gaussian, student- t , three 

different copulas of the Archimedean family, kernel copula, and  their fifteen different mixtures will be 

used.  

 

 

Optimization of a Mixed Probability Model based on Out-of-sample procedures: 

The two different objectives used in the optimization procedure in this study are: 

1) The  loss minimization objective, and 

2) The out of sample log likelihood approach. 
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For optimal mixing of the copulas the weights between 0 and 1 will assigned to the expected indemnities 

generated from the different parametric copulas and the kernel copula. The mixture combinations can be 

carried out to different component copula models. The optimization objective is a loss minimization 

function and is defined as  
2

,( )mix i mix i

i

C r r   where  
,i mixr  is the out of sample expected indemnity 

with hold out observation   for model mix (mixture of two copula models).   
ir   is the actual indemnity for 

that year. It should be noted that this   does not depend on any model. Hence the optimal set of weights, 

*w  , can be obtained as the solution to,  

                                     
* arg min( )w mixW C  

The optimal 
*w   will then be plugged back into the copula densities and the optimal copula mixture will 

be generated.  The optimal copula mixtures will then be used to obtain the insurance rates. 

 

The out of sample log likelihood method for optimal mixing of two or more copula models, given sample 

data P and Y is carried out by optimizing the ―leave-one-out‖ OSLL CV criterion. 

 Let 1 2{ , ,....., : 1; 0 }s i i

i k

W w w w w w i


     be the K component weights and 

*( | , , ) ( . ( , ( )))mix k k k

k K

f x W M w f x  


  be the mixture distribution associated with weights W, the set 

of candidate mixture model, M, and  , the data which contains both the prices and yields, x  is the point 

where the density needs to be predicted. The out of sample likelihood function of mixf  is then 

*

, ,

1

( , , ) [ ( . ( , ))]
N

out

mix k k i i i k i

k Ki

L W M w f p y 


  . To truly represent the out of sample measures, the 

parameters must be functions of iy  and not iy . The above conditions suggest a well defined objective 



10 
 

that can be optimized to obtain the optimal mixing weights of models in mixf . Therefore, the optimal 
*w  

is obtained by maximizing the out of sample likelihood function, 

       
*( , ) arg max( ( , , ))out

w mixW M L W M  .                  (6) 

 

The optimization of equation (6) is straightforward but is intensive. For many applications involving 

likelihood functions, it is more convenient to work in terms of the natural logarithm of the likelihood 

function, called the log-likelihood, than in terms of the likelihood function itself. Since the logarithm is a 

monotonically increasing function, the logarithm of a function achieves its maximum value at the same 

points as the function itself, and hence the log-likelihood can be used in place of the likelihood in 

maximum likelihood estimation and related techniques.  

The last stage involves the employment of the full sample data P, and Y with optimal weights 
*w  to 

arrive at the final mixture model pdf 

 
* * * *( | , , ) ( . ( , ( )))mix k k k

k K

f x w M w f x  


 .                 (7) 

 

Data 

The corn yield data from 1975-2009 has been used in this study. For corn yield, data has been collected 

from Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, Nebraska, and Wisconsin for 602 counties. The 

source of the data is from the USDA National Agricultural Statistics Service. The price for corn is a 

percentage change between harvest price and base price. The base price is the average of the December 

futures prices in February and the harvest price for corn is the average of the December futures prices in 

October.  The prices are used in the Crop Revenue Coverage (CRC) and the Group Risk Income prices 

(GRIP) under Risk Management Agency (RMA) rules.   
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A feature of corn yield is that they have increased through time due to technological gains. To account for 

this technological change the yields have been detrended using a linear regression on time trend (Sherrick 

et al, 2004). This study uses a linear trend form at the county levels with homoscedasticity around the 

trend. Implicitly, this assumption assumes that yields are distributed independently across time. This 

homoscedasticity assumption has been supported for Mid-West corn yields in previous researches 

(Woodard et al, 2008; Yu and Babcock, 2009). 

Empirical Approach 

The estimation procedure consists of denoting the distribution of corn yield and prices. For the corn yields 

an Empirical distribution is assumed because of its ability to fit the data well. The distribution captures 

the skewness and kurtosis of the distribution of yields as yields do not always follow a normal distribution 

according to several literatures (Goodwin and Ker, 2000; Just and Weninger,1999; Nelson and Preckel, 

1989 to name a few). The prices are assumed to follow a Lognormal distribution with mean and variance 

of the distribution as the given base price and price volatility respectively.Since prices cannot be negative, 

a lognormal distribution is assumed. The worst case can be a price equal to zero which would give a non 

zero value to the lognormal distribution. Besides it is more skewed to the right suggesting more weight is 

given to the lower prices. However, it should be remembered that we are focusing on the copula 

estimation impacts  on the rates independent of the marginals we specify for yields and prices. To carry 

forward the analysis, the rates are calculated using the historically available data of corn.  The optimal 

mixing of two different copulas is carried out by optimizing the ―leave-one-out‖  cross validation ( CV) 

criteria using two different objectives mentioned previously. There are other CV criteria like leave-more-

out (Zhang, 1992). But this criteria is a straight forward extension of the more complex ones. 

For each county, the parametric copulas are then calibrated using Canonical Maximum Likelihood Method 

(CML). The CML method does not imply any a priori assumption on the distributional form of the 
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marginals and uses the empirical distribution for each of the n variables to convert each of the observed 

data       into uniform variates,     ̂. The CML method is implemented with a two step procedure: 

 

1. Transformation of the initial dataset    (                 )  where t = 1,2,…….,T into 

uniform variates, using the empirical marginal distribution. Thus  we can write 

 

  ̂  (  
 ̂    

 ̂       ̂  
 )  , ̂ (   )   ̂(   )       ̂ (   )-  where F is the marginal 

distribution. 

 

 

2. The copula parameters α can be estimated via the following relation, 

 

    ̂        
 
∑   ( ̂ 

 

 

   

      ̂ 
    )  

In this paper six different copulas have been used. The Gaussian Copula, student’s t- copula, and the 

Archimedean copula from  three different families, the Frank family, Clayton Family and the Gumbel 

family and the non-parametric kernel copula. After estimating the parameters of the copula we generate 

5,000 random numbers from the five different parametric copulas and the kernel copula. For the Kernel 

copula we use the normal kernel and rule of thumb for bandwidth selection. Different copulas have 

different imbedded dependence structures. So the parameter structures will be different. Hence we have 

correlated uniforms for each copula type. Using the inverse transformation of the specified marginals for 

corn prices and yields we get the simulated prices and yields for each copula.  

Since we are considering county revenue we consider GRIP. GRIP pays an indemnity when county 

revenue is less than the guaranteed revenue. County revenue is calculated using county yield times 
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harvest price. The Indemnity payment of GRIP-HR can be expressed as ,

     ( 0,  ,   *   *  /  *1.5. GRIP HR Indemnity Max Max BasePrice HarvestPrice APH HarvestPrice y Cov  

                                                                                                                                                                               

The base price is the expected value of price which is given to be 4. The harvest price is the simulated 

price from the lognormal distribution. APH is the mean yield of each county. Four different coverage 

levels are considered in this study. They are at the levels of .65, .75,.85, and .90.The leverage factor is 

given to be 1.5. The expected indemnities are estimated using different copulas using the ―leave-one-out‖ 

CV criteria. 

For the out of sample logliklihood method the copula probability density of each copula model was 

calculated at the holdout observation. The parameters of each copula were calculated using the rest thirty 

four observations. Then those parameters were used to calculate the density at the left over observation or 

the holdout observation. The copula densities are then summed over all the thirty five observations and 

stored separately after converting them into log liklihoods. In this way log liklihoods are calculated for 

the six different copula models. For the restrictions on the parameters of the Gumbel and Clayton copula, 

the Kendall’s rank correlation has to be always positive. To account for this restriction perfectly 

negatively correlated yields were generated to allow for a positive co dependence between prices and 

yields. The next step was to calculate the optimal weights. To maintain tractability, the combination 

models were restricted to two. The optimal weights were then calculated using the stored log likelihood 

values of the six copulas. Fifteen different models were created using those six copulas. The optimal 

weights were then plugged back into the mixture density to get to the optimal mixtures. 
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Results and Analysis: 

The single copula distribution models are assessed first to compare the performances of the two different 

objectives in the out of sample optimization procedure. Results of the minimization  and the log 

likelihood objectives are presented in Tables 1 and 2 respectively. 

For the minimization case the four coverage levels are considered. Table 1 shows the frequency with 

which each copula distribution appeared. At the 65% coverage level Clayton copula ranked best based on 

the frequency with which it is appearing. The next best model is the t-copula model followed by Kernel, 

Frank, Gumbel and Gaussian. With the increase in the coverage levels, the family of Archimedean 

copulas explain the data well. It should be noted that the Gaussian copula is ranked the lowest in all 

coverages and the clayton copula is the best in all coverages emphasizing the fact about the tail 

dependences of the associated variables. Table 2 represents the best ranking model based on out of 

sample logliklihood values. The two different objective functions produce different results. Based on the 

likelihood values the Gumbel copula is the best ranking model, followed by Gaussian, t, Clayton , Frank, 

and Kernel.  

Tables 3 and 4 shows the optimal mixture models and the average weights derived from the loss 

minimization objective respectively. Table 3 all four panels shows the frequency with which the fifteen 

different optimal mixture models showed up at each coverage level. Table 3 panel 1 shows that at 65% 

coverage level the mixture of kernel- clayton appeared most of the time 

 ( about 12%) followed by frank-clayton combination and t-clayton combination. In other words, the 

kernel-clayton mixture is the best optimal mixture at 65% coverage level in terms of the frequency with 

which it appears in the counties. Panels 2, 3, and 4 show that at 75%, 85%, and 90% the Gumbel –

Clayton mixture is the best.  From Table 4 we see that at 65% coverage level the Clayton copula had the 

maximum average weight with all single copula distribution. Clayton had 68% of the weight share with 

Kernel copula, 67% with Gumbel, 64% with t, 60% with Frank and 57% with Gaussian. Hence it is clear 
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that any optimal mixture with Clayton is the best model in terms of frequency distribution. It is also the 

case with other coverage levels where any mixture with clayton as a distribution is the best ranking 

model.  

Tables 5 and 6 represents the best mixture models in terms of frequency with which it appeared and the 

average optimal weights respectively from the logliklihood approach. 

Table 5 ranks the best model in the mixture cases in terms of frequency with which the mixture models 

showed up in the counties. The choice of the best model is based on the logliklihood values. The gumbel 

–clayton mixture is the best mixture model in terms of appearances in 39% of the counties followed by 

gaussian-gumbel with 13% of the counties. In the logliklihood approach the optimal weights associated 

with gumbel are more relative to all other distributions. The worst performing model among the mixtures 

are the kernel mixtures with other distributions. The entire weights are taken by the single distributions 

mixed with kernel. 

Table 7,  panel 1 provides the average rates across counties relative to the  best optimal mix, Gumbel-

Clayton which is the best ranking model in both the objective functions. Panel 2 presents the root mean 

square error of rates for each copula generated rate relative to best optimal mixture model. At 90% 

coverage levels the average rate generated from Gumbel is 130.57 compared to 122.91 of the Gumbel-

Clayton mixture. The rates generated from kernel, Gaussian, t, frank, gumbel are comparatively higher 

than the rate generated from the best optimal mixture. 

Panel 2 table 7 represents the RMSE’s. The results indicate that the potential efficiency gains are quite 

large for all individual models when compared with the best model. For example the rates generated from 

the gumbel copula tend to exhibit largest divergence between it and the mixture model at all coverage 

levels. 
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Jackknife re-sampling method for rating analysis 

It is reasonable to investigate the differences in alternative distributional representations with the optimal 

mixture representation. To check whether the expected indemnities generated through different single 

copulas and the mixture copulas do generate similar expected indemnities or not, we used the jackknife 

resampling method. 

The best optimal mixture model for both the minimization objective and the logliklihood objective is the 

gumbel-clayton mixture. However, in addition we also used frank-clayton mixture as it was the second 

best model in the loss minimization objective. We used these two mixtures with the six copula 

distributions to check for the significance of the expected indemnities at all four coverage levels. 

Resampling is a computationally intensive statistical technique in which multiple new samples are drawn 

(generated) from the data sample or from the population inferred by the data sample. The Jackknife 

procedure was used as a resampling method. For the Jackknife resampling procedure we generated the 

expected rates from different copulas using the corn yield and price data sample and calculated the 

standard deviation of the estimates to check for the significance of the expected indemnities. 

Let    be the estimates of expected indemnity function under Kernal, Gaussian, t, Frank, Gumbel, and 

Clayton , frank-clayton, gumbel-clayton respectively. After calculating the estimates we tested the 

equality of the true indemnity function under two different copulas. For instance, if     and     stand 

for true expected indemnity under Gaussian and frank-clayton copula then we tested 

                            . For this purpose we used the jackknife re-sampling method to 

calculate the standard deviation of the estimates, and the jackknife method is described below. 

 Let  ̂ 
       ̂  

    be the estimates of the expected indemnity function under Gaussian and frank-clayton 

copula respectively, based on the dataset after removing the i
th
 observation, i=1,2,..,n. In our dataset n=35.  
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Again let,   ̂    ̂   ̂  .  and   ̂     ̂  
     ̂  

      .  Hence we have   ̂( )  
 

 
∑ * ̂  

     ̂  
   + 

   . 

The variance of θ can be written as,   ( ̂)  
   

 
∑ ( ̂  

     ̂  
   ) 

   . 

Table 8 all the four panels shows the frequency with which the expected indemnities generated through 

different copulas are significant at 5% significance level in all coverage levels. Panel 1 shows that at 65% 

coverage levels, 28% of the counties showed significant differences in expected indemnities generated 

through kernel copula and the optimal mixture of Frank-Clayton. 30% of the counties showed significant 

differences between kernel and Gumbel-Clayton mixture. Table 8 panel, 2,3, and 4 shows the different 

frequencies with which the individual copula generated rates and the two best optimal mixture rates- the 

Gumbel –Clayton mixture and the Frank-Clayton mixture are significant across counties at the 5% 

significance levels. 

Conclusion 

The main purpose of this study is to propose a framework for optimal model mixing in a cross- validation 

context. Copulas are comparatively new in the agriculture economics literature. Although new, copulas 

have been used quite vividly in the insurance rating literature. But the mixing of copulas for efficiency 

gains in the rating process is relatively new. Using two objective functions in the optimization process for 

optimal mixing weights of copulas in an out of sample framework allows for defining and designing 

specifications that are both efficient and flexible compared to the single copula distributions. 

The optimal mixture models from the two different objectives used in this paper indicate that the mixture 

between the Archimedean families rank best. Even in the single distribution cases the elliptical copulas 

perform poorly compared to the copulas like clayton, gumbel which shows much dependence in the tails. 

All these indicate the importance of having an efficient association between the price and yield variables 

used to generate expected indemnities.  The other important thing noted in this study is the poor 

performance of the non-parametric methods in the log likelihood objective function used in the 

optimization procedure. 
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The jackknife resampling method indicated that at least in some of the counties the expected indemnities 

generated with different copulas did generate different indemnities, that is, they are significant at the 5% 

significance level. There are different types of copulas present in the literature. Hence there is the 

possibility of combining different copulas other than these six types for optimal mixing which in turn can 

show better performances in the rate generation. Also here the optimal mixing is restricted to 

combinations of two for computational simplicity. But there is always a possibility of mixing more than 

two copulas. 
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Appendix 

 

Table 1 Frequency Model Ranked Best (Individual Copulas) 

  
                                     

Coverage       

 Model 65% 75% 85% 90% 

 Kernel 0.15 0.15 0.14 0.15 

 Gaussian 0.12         0.09 0.09 0.07 

 t 0.19 0.13 0.11 0.09 

 Frank 0.12 0.21 0.2 0.16 

 Gumbel 0.12 0.06 0.1 0.21 

 Clayton 0.29 0.36 0.35 0.33 

 
*Table presents frequency(or percentages) with which the rates generated with  

 different individual copulas  ranked best.   
  

 

  

Table 2 Frequency Model Ranked Best based on OSLL values 

Model Kernel Gaussian t Frank Gumbel Clayton 

 

_ 0.19 0.13 0.09 0.47 0.12 

 *Table presents frequency with which the rates generated with    

different individual copulas ranked best based on OSLL values   
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Table 3 Frequency Model Ranked Best-Loss Minimization Case 
 Cov.Lvl:   65%           

 
  Kernel Gaussian t Frank Gumbel Clayton 

 Kernel _ 4.31% 5.98% 4.48% 2.49% 12.90% 

 Gaussian 

 

_ 4.15% 3.48% 3.82% 6.81% 

 t 

  

_ 7.31% 8.13% 10.29% 

 Frank 

   

_ 6.31% 10.79% 

 Gumbel 

    

_ 8.63% 

 Clayton 

     

_ 

 

        Cov.Lvl:   75% 

        Kernel Gaussian t Frank Gumbel Clayton 

 Kernel _ 4.15% 6.14% 6.31% 3.48% 12.79% 

 Gaussian 

 

_ 3.98% 4.98% 2.65% 4.81% 

 t 

  

_ 7.81% 1.87% 8.14% 

 Frank 

   

_ 4.98% 13.12% 

 Gumbel 

    

_ 14.78% 

 Clayton 

     

_ 

 

        Cov.Lvl:   85% 

        Kernel Gaussian t Frank Gumbel Clayton 

 Kernel _ 4.65% 4.31% 5.15% 4.48% 9.63% 
 Gaussian 

 

_ 4.98% 3.48% 1.49% 5.15% 
 t 

  

_ 5.81% 1.99% 6.81% 
 Frank 

   

_ 5.81% 12.62% 
 Gumbel 

    

_ 23.58% 
 Clayton 

     

_ 

 

        Cov.Lvl:   90% 

        Kernel Gaussian t Frank Gumbel Clayton 

 Kernel _ 4.48%  4.81% 5.31% 5.32% 6.97% 

 Gaussian 

 

_ 3.65% 2.65% 3.15% 5.15% 

 t 

  

_ 3.82% 1.82% 7.31% 

 Frank 

   

_ 7.14% 9.80% 

 Gumbel 

    

_ 28.57% 

 Clayton 

     

_ 

               

 *Table 3 presents the frequency with which the mixture models based    

 on loss minimization objective ranked best across 

counties     
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Table 4 Average Optimal Weights for the Mixtures-Loss Minimization Objective 

Coverage level=.65 

         Kernel Gaussian t Frank Gumbel Clayton 

  Kernel              _ 

       Gaussian 0.59            _ 

      t 0.49 0.44   _ 

     Frank 0.64 0.54 0.65        _ 

    Gumbel 0.47 0.27 0.4     0.32         _ 

   Clayton 0.68 0.57 0.64      0.6      0.67 _ 

  *Weights are for the distribution in each row. The distribution   

  in the column is the companion distribution in the mixture model   

   

        

  

      

      

 

      

Table 5 Frequency Model Ranked Best based on OSLL 

  Kernel Gaussian T 

Fran

k Gumbel Clayton 

Kernel 

 

_ _ _ _ 0.03% 

Gaussian 

  

8.97% 2.49% 13.95% 10.29% 

t 

   

0.06% 3.65% 7.47% 

Frank 

    

2.90% 9.40% 

Gumbel 

     

39.70% 

Clayton 

      *Table presents frequency with which the different individual copulas 

  forming mixture models ranked best based on OSLL values 
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Table 6 Average Optimal Weights for Mixture Distributions-OSLL 
   Gaussian t Frank Gumbel Clayton   

  Gaussian         _ 

       t       0.25 _ 

      Frank       0.19 0.51        _ 

     Gumbel       0.6 0.69 0.77       _ 

    Clayton       0.21 0.26 0.26    0.21 _ 

   *Kernal mixture has been dropped because all the weights of kernel are equal to zero 

 *Weights are for the distribution in each row. The distribution 

   in the column is the companion distribution in the mixture model     
  

Table7 Estimated Insurance Rates, Average Across Counties 

Cov.Lvl Kernel Gaussian T Frank Gumbel Clayton Optmix 

65% 32.68 31.64 32.61 31.58 33.44 30.88 30.52 

75% 59.41 59.19 59.39 57.98 75.39 57.27 57.83 

85% 98.54 99.89 99.792 97.59 110.45 96.73 97.71 

90% 122.91 125.12 125.19 122.61 130.57 121.23 122.91 

  
 

RMSE Relative to OptimalMix       

Cov.Lvl Kernel Gaussian T Frank Gumbel Clayton Optmix 

65% 3.43 2.31 3.92 1.92 4.67 1.43 

 75% 3.73 3.23 3.98 2.62 20.8 1.9 

 85% 3.58 3.81 3.92 2.81 15.7 2.59 

 90% 3.66 3.97 4.1 3.2 10.29 3.39 

 *table represents estimated insurance rates for each copula distribution 

averaged across all counties in the sample as well as root mean square error 

 of each model relative to the optimal mixture       
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Table 8 Frequency of Significance between Individual Copulas and Optimal Mixtures 

                   
 

 
  Cov.Lvl 65%       

   

 
    Frank-Clayton Gumbel-Clayton 

   

  
Kernel 28.24% 

 
30.89% 

    

  
Gaussian 3.65% 

 
3.98% 

    

  
T 22.75% 

 
24.41% 

    

  
Frank 2.65% 

 
4.48% 

    

  
Gumbel 27.91% 

 
29.24% 

    

  
Clayton 3.32% 

 
6.81% 

    

          

  
Cov.Lvl 75% 

      

  
  Frank-Clayton Gumbel-Clayton 

   

  
Kernel 20.27% 

 
18.10% 

    

  
Gaussian 7.14% 

 
8.47% 

    

  
T 11.46% 

 
15.94% 

    

  
Frank 1.66% 

 
5.31% 

    

  
Gumbel 83.88% 

 
82.55% 

    

  
Clayton 2.15% 

 
18.93% 

    

          

  
Cov.Lvl 85% 

      

  
  Frank-Clayton Gumbel-Clayton 

   

  
Kernel 6.15% 

 
8.97% 

    

  
Gaussian 8.88% 

 
7.14% 

    

  
T 6.81% 

 
7.97% 

    

  
Frank 0.16% 

 
2.99% 

    

  
Gumbel 76.25% 

 
74.41% 

    

  
Clayton 0% 

 
17.77% 

    

          

  
Cov.Lvl 90% 

      

  
  Frank-Clayton Gumbel-Clayton 

   

  
Kernel 2.65% 

 
4.65% 

    

  
Gaussian 9.13% 

 
5.64% 

    

  
T 8.63% 

 
6.16% 

    

  
Frank 0.16% 

 
3.98% 

    

  
Gumbel 57.47% 

 
55.81% 

    

  
Clayton 0% 

 
20.43% 

    

          

  
* Table represents the frequency with which the  

   

  
individual copula generated rates and the optimal mixture rate 

  

  
is significant at the 5% significance level at all coverages. 

    


