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Abstract

This article focuses on the demand system of French farmers concerning pesticides uses. We estimate
the demand elasticities of herbicides, insecticides and fungicides with respect to pesticide expenditure,
and considering crop differentiation. Then we compare two indexes that are used in agronomic literature
to measure the intensity of pesticides uses. We retain a Linear Approximated Almost Ideal Demand Sys-
tem (LA/AIDS) specification. A Full-Information Maximum Likelihood estimation procedure is used for
dealing with the problem of censored dependent variable. We consider two cross-sections observed in
2001 and 2006 covering pesticides uses of three crops. We confirm the previous results of the literature
that farmers response to price variation is very low, with higher prices response in 2006 than in 2001.
Moreover, we find that conditional herbicides expenditure elasticities are often higher than insecticides
expenditure elasticities, but lower than those of fungicides. We find higher own-price elasticities for
herbicides and fungicides than for insecticides, which is the less used. Finally, application dose seems
statistically better to explain herbicides decision, whereas treatment frequency index appears better for in-
secticides and fungicides. However, most of elasticities are closed for dose and treatment frequency index.
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1 Introduction

France is the third largest user of pesticides in the world. Its production’s system seems to be very

dependent on the use of these products. In 2007, the Environment Round Table, i.e. "Grenelle de

l’Environnement", proposed more than 250 environmental commitments. The French government made

an important commitment to reduce the use of pesticides by 50% during the next ten years. Nevertheless,

the use of pesticides is often the only mean for farmers to maintain their yields by a better control of

pest damages, see Lichtenberg and Zilberman (1986). A taxation system could be a solution to reduce

pesticides uses. Under several assumptions, its level could be evaluated if demand relative to prices of

treatments is known. For the time being, only few applied economic studies focus on this topic. Micro

data on prices and individual uses of French farmers allow analyzing individual decision of treatments

and estimating a complete system of demand on pesticides uses.

Agricultural economics literature on pesticide use is concentrated especially on marginal productivity

measurements, yields losses caused by pest damages and economics evaluations of banning pesticides,

see Fernandez-Cornejo, Jans and Smith (1998) and Sexton, Lei and Zilberman (2007) among others. At

French level, the recent work of Butault et al. (2010) estimates the impact of reducing pesticides uses

on farmer productivity merging individual data on cost and pesticides uses. Our analysis completes this

work by taking disaggregated data on the pesticides prices into account. Our approach allows to analyze

the sensitivity of farmers to the price of the pesticides.

This article focuses on the estimation of demand system of French farmers concerning pesticides uses.

Estimations of conditional demand elasticities of herbicides, insecticides and fungicides are computed

considering crop differentiation. Finally, we compare two indexes that are used in agronomic literature to

measure the intensity of pesticides uses. In this perspective, a Linear Approximated Almost Ideal Demand

System (LA/AIDS) specification is retained. The use of products data is the major source of estimation

problem. This problem comes from the fact that many categories of products have positive as well as zero

applications (i.e. censored dependent variable). If censoring is not considered, elasticities of expenditure,
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and direct prices elasticities of demand are biased. Following Shonkwiler and Yen (1999), hereafter SY,

a specific estimation procedure is used for dealing with this problem.

This article is organized as follow: in Section 2, we review the literature concerning applied works

on pesticides uses. Section 3 describes the censored demand LA/AIDS specification. In Section 4, the

description of the data is done. The results of estimates are given and discussed in Section 5. The paper

ends with some concluding remarks.

2 Background

Previous studies in analysis of pesticides uses are numerous. Surveys of important issues underlying this

research are contained mainly in Fernandez-Cornejo et al. (1998) or more recently in Carpentier et al.

(2005) or Sexton et al. (2007). This literature includes three main axes which are marginal productivity

measurements or demand analysis of pesticides, yield losses caused by pest damages and economic evalu-

ations of banning pesticides. The first axis concerns the pesticide productivity. It was initiated by Headley

(1968) at aggregated level and by Fisher (1976) at micro level. The main results concern U.S. agricul-

ture, see Fernandez-Cornejo et al. (1998). Marginal productivity of pesticides expenditure is very high

in absolute value. Marginal costs of reducing pesticides uses for health and environmental considerations

are relatively high. These results were first obtained by Campbell (1976) and have been corroborated by

recent studies. For example, Fernandez-Cornejo (1992) showed that in the short run, a 10% reduction of

pesticides uses would reduce farmer’s income by 17%1. More generally, to reduce pesticide use by 25%,

studies based on U.S. or Netherlands data mentioned a level of tax between 31 and 227%, see "Expertise

collective INRA-Cemagref" (2005). Arndt (1999) estimated the demand for three chemical families of

herbicides2 using farm data. He showed that price elasticity is very limited. So, pesticide taxes do not

appear to be an effective tool to reduce pesticide use, and the effect of taxes varies over region and govern-

ment policies in the U.S., see Zilberman and Millock (1997). The introduction of Genetically Modified

1 The data concerns corn on Illinois for 1986.
2The three chemical families are: Atrazine, Cyanazine and M-A, which is made from a composite of Metolachlor

and Alachlor.
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Organism (GMO) set up new researches. Researcher measure gains or losses if GMO’s seed are chosen

instead of insecticides at the level of cost production function, see Sexton et al. (2007) or Horna et al.

(2008).

The second axis completes the first axis by introducing pest damages to measure the impact of pes-

ticide use on productivity. The model, initiated by Lichtenberg and Zilberman (1986), hereafter LZ.,

introduces the functional forms that captures the specificity of the pesticides for controlling the pest dam-

ages. LZ tried to control the potential effects on the value of marginal product inputs. Following LZ,

two kinds of studies have emerged. On one hand, theoretical articles tested the different specifications

for the damage function by assuming that the cost of applying pesticides just equals the value of reduced

damages caused by pest, see Chambers and Lichtenberg (1994), or Fox and Weersink (1995). On the

other hand, empirical articles were limited by the scarcity of data on pest damages. Norwood and Marra

(2003) introduced in LZ framework the number of treatments applied by a farmer as a proxy for pest

population and argue that it enables to reach the "true pesticide productivity". Chambers, Karagiannis

and Tzouvelekas (2010) used a panel data set of Greek olive producer. They measured how pesticide

application biases the optimal use of other inputs by the introduction of a pest pressure covariate. Their

results suggested that pesticides are under-used by farmers. This conclusion confirms those of studies

that conclude on the underestimation of marginal pesticide productivity, see Carrasco-Tauber and Moffitt

(1992).

Moreover, chemical inputs are often aggregated (see Carrasco-Tauber (1992)), considering both fer-

tilizers and pesticides (Fernandez-Cornejo (1992)), except for Desbois, Butault and Surry (2010). These

authors merged accountancy data (FADN) with the "enquêtes pratiques culturales" (hereafter PK) to es-

timate farmer’s expenditure and cost function for different categories of treatments introducing regional

dimension, type of farming and economic size. More generally, pesticide use is analyzed among other

agricultural inputs: Fernandez-Cornejo (1992) considers seven inputs including pesticides, Carrasco-

Tauber and Mofitt (1992) focus on chemical inputs. These examples of disaggregated analysis among

inputs connect the use of pesticides to other inputs measuring complementarities and substitutions. Car-
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pentier and Weaver (1997) underlined the importance of this point. Indeed homothetic separability as-

sumption would imply that the level of directs inputs have no effects on the productivity of a particular

pesticide. Correlation between chemicals is demonstrated, but this relation varies among studies. For

Lansink and Peerlings (1996), fertilizers and pesticides are complements whereas they are substitutes for

Fernandez-Cornejo (1992) or Lim, Shumway and Honeycutt (1993). Lansink and Silva (2004) showed

that fungicides and fertilizers are complements at low application levels of pesticides. This result implies

positive interactions between these inputs when farmers minimize pesticides uses. Otherwise, herbicides

and other pesticides are locally complementary for fungicides.

While economic literature focuses on productivity or demand analysis of pesticides, agronomic lit-

erature, and especially entomology analyzes pesticide reduction. Meissle et al. (2009) consider the case

of maize to propose potential long-term solutions to decrease pesticide use. Mechanical weed control,

fertilization or plowing could reduce herbicide inputs. Micro biological control is proposed instead of

insecticide inputs. For example, a biological solution to fight against corn borer is to use Trichogramma.

Rolland, Oury, Bouchard and Loyce (2006) underline that the choice of resistant varieties decreases fungi-

cide inputs. Moreover, an increase in energy prices influences positively pesticide use, see Miranowski

(1980). This result has been confirmed by Bayramoglu and Chakir (2010) on French panel data. It is

important to underline that empirical analysis were limited by the scarcity of exhaustive data. In 1991,

the setting of "directive Nitrates"3 leads European countries to control for the respect of regulation and

imposes them to lead survey on agricultural conduct to verify it. At French level, the PK provides the

main source of information of the recent reports, see EcoPhyto R&D (2010). For the crop year of 2005-

2006, it reveals that the mean treatment cost is about 134 euros/hectare with a great variability among

crops4. Treatment cost per hectare for bread wheat is closed to the mean, whereas it is about 200 euros

for rape, and 87 euros for sunflower. Around 70% of pesticides uses are made by field crops, i.e. 45% of

the utilized agricultural area. In this context, Butault et al. (2010) estimate the impact of reducing pesti-

3This regulation directive imposes to European countries to control the level of polluting inputs in water.
4Calculations are made from FADN data on the total expenditure in pesticide inputs.

6



cide use on farmer productivity merging individual data on cost and pesticides uses for France. They set

up scenarii to simulate the impact of reducing this input, but do not measure price sensitivity of farmers.

Our analysis overpasses this work by taking disaggregated data on the pesticides prices into account. Our

approach allows to analyze the sensitivity of farmers to the price of the pesticides.

3 Censored demand system

Since the seminal paper of Deaton and Muelbauer (1980), the Almost Ideal Demand System (AIDS) has

become very popular in applied economics and widely adopt by agricultural economists, see Taljaard

et al. (2004). The AIDS popularity can be ascribed to several reasons, mainly related to its flexibility,

linearity and completeness (i.e. adding-up, homogeneity and symmetry conditions). Earlier studies on

demand systems estimation have used aggregate time series data and a SURE approach in the spirit of

Zellner (1962). To overpass the consequences of an aggregate level (representative consumer, etc.), re-

searchers have led to consider micro data sets. However, this micro level presents often a major estimation

problem, i.e. many items of the demand system are censored. For example, cross-section expenditures

data involve positive as well as zero purchases. Heien and Wessels (1990) underline the economic impli-

cations of censored information and have developed a two-step procedure. Since this key study, several

statistical procedures accommodate censored dependent variables in a demand system, see Tauchmann

(2005). Here, we focus on the demand for pesticides. Price-taking farmers are supposed to determine

their optimal level of pesticide use by maximizing their profits. The AIDS model is usually specified, in

budget-share form, as:

wj = αj +
M∑
j=1

γjl ln pj + βj ln(X/P ∗) j = 1, ...,M, (1)

where wj is the budget share from group j (j = 1 (herbicides), 2 (insecticides) and 3 (fungicides)), X ,

the total expenditure generated by the products in the demand system, pj , the price of the group j. P ∗ is

the Stone price index5 given by lnP ∗ =
∑N

j=1wj ln pj . The demand system that incorporates this price

5The Stone’s price index is computed using the budget share evaluated at the mean of the sample.
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index is called a Linear Approximated AIDS, namely LA/AIDS, see Blanciforti and Green (1983). αj , βj

and γjl are the demand parameters. Demographics are incorporated into (1) through αj , and theoretical

restrictions imposed are
∑
αj = 1,

∑
βj = 0 (adding-up),

∑
γlj = 0 (homogeneity), and γlj = γjl, for

all l, j (symmetry), see Yen, Kan and Su (2002) among others.

For any given plot, some categories of products have positive as well as zero applications, implying

a censored dependent variable. If censoring is not considered, estimation procedures produce biased and

inconsistent parameter estimates. A non-linear generalization of the multivariate tobit system is used to

deal with censoring, see Amemiya (1974, 1984), Lee (1978), SY (1999), Yen, Lin and Smallwood (2003)

or Tauchmann (2005). The censored demand system is defined as:

w∗
ij = f(x

′
ij , ηj) + εij (2)

d∗ij = z
′
ijθj + vj (3)

dij =

{
1 if d∗ij > 0

0 if d∗ij 6 0
(4)

wij = dijw
∗
ij i = 1, ..., N, j = 1, ...,M (5)

where wij and dij are the observed dependent variables, w∗
ij and d∗ij , their corresponding latent variables.

The vectors of exogenous variables are xij and zij . ηj and θj are the vectors of parameters. Direct

Maximum Likelihood (ML) estimation of censored demand system is difficult when censoring occurs in

multiple equations as the likelihood function generally involves multiple integrals. Several authors have

developed feasible and reliable alternative estimation procedures.

In 1990, Hein and Wessells (hereafter HW) proposed a two-step procedure. In a first step, a probit

regression is estimated to determine the probability that a given group get zero-share expenditure. Using

this regression, the inverse Mills ratio is computed for each group. In the second step, the censoring

latent variables are introduced using the inverse Mills ratios in a Seemingly Unrelated Regression (SUR)

framework to estimate the demand system. SY (1999) underline that HW procedure has been used exten-

sively in the empirical literature. Nevertheless, SY (1999, p. 973) emphasize the "internal inconsistency

in the HW model". Using a Monte Carlo experiment, they showed that HW estimator is inconsistent
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and performs poorly. So, SY proposed a two-step approach based on the full sample instead of nonlimit

observations. The system of equations (2) can be written as :

wij = Φ(z
′
ijθj)f(x

′
ij , ηj) + δjφ(z

′
ijθj) + ξij (6)

where Φ(·) and φ(·) are respectively the cumulative and probability density functions. In a first step, the

ML probit estimators give θ̂j . In a second step, we compute Φ(z
′
ij θ̂j) and φ(z

′
ij θ̂j), and then estimate the

parameters of (6) by ML or SUR procedure. Nevertheless, the disturbances of (6) are heteroskedastic,

see SY (1999, p. 974). So, efficiency could be achieved by using a weighted system estimator. The

procedure of SY was applied to a system of linear demand functions for cigarettes and alcohol in Su

and Yen (2000)6. In 2002, Yen, Kan and Su described a procedure to compute the covariance matrix

of the second-step estimator under heteroskedasticity. This framework is used to estimate a translog

demand system for household consumption of fats and oils in the U.S. Tauchmann (2005) showed that

SY estimator is often less efficient than some competing two-step estimators from multivariate Heckman

family model given certain parameter assumptions.

An alternative approach to estimate a censored demand system was developed by Perali and Chavas

(2000)7, hereafter PC. They proposed, in a first step, to estimate each demand equation in unrestricted

form using Jackknife methodology. Then, in a second step, the demand parameters are obtained by

imposing the cross-equations restrictions by using Minimum Chi-Square (MCS) Estimator. The PC and

SY approaches are consistent but suffer in efficiency. To deal with this problem, Yen and Lin (2002),

Yen, Lin and Smallwood (2003) and Yen, Fang and Su (2004) have proposed to estimate a censored

demand system using the Quasi Maximum Likelihood (QML) Estimator8. This procedure is built for

imposing adding-up in a censored demand system as underlined Yen, Lin and Smallwood (2003). Several

studies such as Dong, Gould and Kaiser (2004) underline that the adding-up issue has not been adequately

6See also Hutasuhut, Chang, Griffith, O’Donnell and Doran (2001) or Yen, Kan and Su (2002) among others.
7This paper extends the procedure used by Browning and Meghir (1991), Blundell, Pashardes and Weber (1993),

Browning and Chiappori (1998).
8Harris and Shonkwiler (1997) have also used a Quasi Maximum Likelihood approach to estimate a multivariate

Tobit type formulation. See also Blundell and Meghir (1987) or Pudney (1989) for a description of alternative
approaches when data used have relatively large proportions of zero observations.
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examined or ignored in censored demand systems. The QML estimator differs from equation-by-equation

Tobit estimators in that cross-equation correlations are accommodated, thus improving efficiency. Yen

and Lin (2002) compared the QML and Full-Information Maximum Likelihood (FIML) estimators. They

investigated the beverage consumption among children and adolescents in the U.S. They showed that the

QML estimator performs as well as the FIML estimator. The main advantage is that the QML approach

is more tractable in large systems with many censored dependent variables. In the current situation, with

three budget share, the FIML is implemented to estimate the demand system.

4 Data description

Our data set concerns the farmer demand of pesticides. The data set is drawn from several sources mainly

from two surveys collected by the Statistical Department of French Ministry of Agriculture: the PK and

IPAMPA9. PK survey is conducted to observe farmers agricultural practices, including pesticide use, at

plot scale10. The prices of pesticide products come from the IPAMPA.

We have merged PK and IPAMPA data using the name of pesticide product used on each plot. We

aggregate each expenditure to compute the total expenditure by category of treatments per plot. Three

main categories of treatments are retained (herbicides, insecticides and fungicides) to avoid the problem

of missing prices. Moreover, we focus on three crops which are close in term of practices: tender wheat,

durum wheat and barley. Our analysis focuses on two cross-sections. They concern 893 plots in 2001 and

709 in 2006 for three fields crops. Following Table 1, the first cross-section (i.e. 2001) contains about

58.4% of tender wheat (resp. (54.3% in 2006), 32.8% of barley (resp. 31.8%), and 8.7% of durum wheat

(resp. 13.8%). These variations illustrate the turnover between the different crops.

Prices are derived as the value per hectare of treatment11 and are computed according to two rules:

9This acronym means "agricultural means of production purchasing price index". This index is made to track
trends in the prices of goods and services used by farmers for their farm operation. These prices are taken from the
retailers of farming products.

10i.e. including mainly the use of several inputs (pesticide, fertilizer, plowing, etc.) for the selected plot as well
as detailed demographic characteristics of each farmer.

11Moschini (1995) showed that the Stone’s price index is not invariant to changes in the units of measurement
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1. The budget for the type j is the aggregation of the costs of all the treatments of this type. For

each treatment, this cost is the price of the product used weighted by the application dose, namely

DOSE. This aggregation rule captures partially the heterogeneity between the actives ingredients

contained in the pesticide products.

2. To overpass this restriction, an agronomic index is introduced because it enables to aggregate prod-

ucts with very different active ingredients, see Pingault et al. (2009). This index is the treatment

frequency index (hereafter TFI) which is defined as the ratio between the applied dose and the legal

dose. Compared to the variable DOSE, the price of each product used by farmer is weighted by the

TFI index.

[INSERT Table 1 HERE]

Expenditure variables are inflated by general index of input prices (i.e. IPAMPA, base 100 in 2000).

Then prices are normalized with respect to the sample mean price per category of treatment. Quantities

per plot are defined as the total cultivated area associated to the plot. Indeed, at an aggregated level,

the degree of pesticide use is linked to the total cultivation area of a crop. The high proportion of zero in

dependent variable suggests that is it important to deal with censoring (see Table 1). 88.8% of plots do not

apply insecticides in 2001 (resp. 94.2% in 2006), and 20.8% do not use fungicides in 2001 (resp. 25.53%

in 2006). Herbicides uses are lightly affected by censoring. The level of censoring highly depends on the

cultivated crop (see Table 2). In 2001, 87.9% (resp. 95.6% in 2006) of bread wheat plots did not used

insecticides. The level of censoring for fungicides budget share is included between 15.7% for barley in

2001 and 37.2% for durum wheat the same year. Finally, in 2001, 9.74% of the sample uses the three

categories of treatment in 2001, 66% used 2, and 24.30% only used one category (see Table 1). In 2006

the uses are respectively 29.5%, 65.4% and 5.08%.

[INSERT Table 2 HERE]

prices, this is the reason why the units of all categories were homogenized. So prices are all normalized as the price
for one kg (resp. litter) per hectare.
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Moreover, to measure the relation between pesticide expenditure and agricultural output, we introduce

a yields index. It is computed as the ratio between the observed yield on the plot and its mean by year and

crop, that enables to control for crop yield heterogeneity. Indeed, the mean observed yield is 55.69 q/ha

in 2001 (resp. 58.80), with a great heterogeneity among crop. More precisely, the observed plots reports

a mean yield of 58.73 q/ha in 2001 (resp. 62.59 in 2006) for tender wheat, 43.43 (resp. 40.19) for tender

wheat and 53.53 (resp. 60.42) for barley. These observations are few lower than the sample mean yields

for France for this two years. Biological evidence illustrates the importance of allowing for interactions

among inputs and practices. The selected technical variables on practices used are: fertilization (either

organic or inorganic), plowing, mechanical weeding, yields (see Table 1). In 2001, 10% of plots have

been organically fertilized (resp. 9.3% in 2006), and more than 98.7% for inorganic fertilization (resp.

97.2%). A plowing dummy is also introduced, because it concerns about 85.1% of the plot use in 2001,

and 66.3% in 2006. Mechanical weeding is made on 3.4% of plots in 2001 (resp 0.6% in 2006).

The seasonal and spatial nature of crop production also influence practices. We introduce climate

regional data for each group of regions. This enables to control heterogeneity between the two crop years

of our data. Indeed, in 2000/2001 unfavorable climate conditions led to low-level yields. On the opposite,

2005/2006 is characterized by hot climatic conditions associated with low plant disease that hurts yields

only for some crops (e.g. wheat, barley or rape). The climatic data are the rainfalls over 2001 and 2006

per region and a mean temperatures of the two seasons of treatments per region (i.e. autumn 2001 (resp.

2005) and spring 2001 (resp. 2006)).

Table 3 reports the Pearson correlation matrix. First, the samples are characterized by weak cor-

relations among the different budget share categories and agricultural inputs dummies. The correlation

between herbicides budget share and mechanical weeding is significantly at 0.7 in TFI2001 and 0.21 in

DOSE2006. Moreover, yields are positively correlated with insecticides and fungicides budget share. In-

deed, pest attack hurts yields. In 2001, this fact is illustrated by a positive and significant correlation

of 0.08 among insecticide budget share and yields. The level of correlation is higher between fungicide

and yields. The correlation varies from 0.25 to 0.31. Furthermore, in agriculture inorganic fertilization
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is used to increase yields. This result is confirmed in our samples with a significant coefficient of 0.10

in 2001. The effects of fertilization on pesticide expenditure do not appear clearly. This result is con-

sistent with previous studies, see mainly Lansink and Peerlings (1996). Indeed the correlation between

organic fertilization and herbicide is set at 0.12 in TFI2001 and DOSE2006, and inorganic coefficient is sig-

nificantly negative. Likewise, organic fertilization is negatively correlated with fungicides budget share.

The correlation varies from -0.08 to -0.13. Finally, the weak negative correlation between Farmer’s age

with insecticide budget share could illustrate the idea of Huffman (2001) that farmers human capital and

knowledge influence their choice to provide efficient treatments.

[INSERT Table 3 HERE]

5 Estimation results and discussion

Using three categories of treatments and ten demographics, the AIDS specification is first estimated with-

out the fungicide equation. This way to proceed is suggested by Pudney (1989) to address the adding-up

restriction. The results are reported in Tables 4 and 5. The first two columns report the FGLS (1) and SY

Two-Step (TS) procedure (2) results. For the TS procedure, in a first step a univariate probit for the choice

of treatment category is estimated by Maximum Likelihood. These estimations are used to compute the

density and the cumulative functions, respectively φ(.) and Φ(.). Then, the augmented system (see eq.

(6)) is estimated by FGLS on the whole sample, and robust covariance matrix is computed following

White (1980).

Drichoutis, Klonaris, Lazaridis and Nayga (2008) underlined the importance of the adding-up restric-

tion. Yen et al. (2002) have shown that the SY procedure may not satisfy in general this assumption. So,

Yen et al. (2003) proposed a practical procedure for imposing the adding-up. This approach is based on

QML or FIML. Last, we estimate the demand system using FIML (3) (i.e. last column of Tables 4 and 5).

This FIML approach is applied to three categories of treatments following Dong, Gould and Kaiser

(2004). It enables to control for both upper and lower bound of the dependent budget share of treatment.

The estimations are provided for four samples considering the price of the aggregated treatments per
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category on one plot for DOSE and TFI. Moreover, 2001 and 2006 practices are compared with the

estimation of one system per year. This approach leads to four set of estimates per specification. Tables 4

and 5 present the estimation results without the estimated coefficients of dummies12.

Each procedure provides very close results for the error standard deviations (σwj ). For herbicides

equation, it is around 0.23 in DOSE2001, and 0.26 in TFI2001. They are lower for insecticides equation,

and vary from 0.03 to 0.08 for all set of estimates. The correlation coefficients provide an interesting

result. The coefficients tend to -0.1 in 2001 between herbicides and insecticides, and are similar for TFI

and DOSE. On the opposite, they tend to differ in 2006. The higher degree of correlation is between

herbicides and fungicides for all the samples, with a coefficient always higher than -0.9. In 2006, they are

significant justifying the estimation of the demand equation within a system. The selectivity regressors in

(2) (δwj ) are statistically significant, at a level of 5%, for insecticides and fungicides equations, suggesting

that correcting bias is relevant for this category of treatment.

Moreover, the demographic variables are never significant for all the situations. For example, inor-

ganic fertilization always decreases herbicide budget share, whereas organic fertilization increases it only

in 2001. Plowing influences only insecticides application in DOSE2001. Mechanical weeding is never

significant to explain pesticides treatments. On one hand, yield negatively influences herbicides budget

share. For example, an increase of 1q/ha of yields would decrease herbicides budget share by 0.25% in

DOSE2001 or 0.35% in TFI2001. On the other hand it positively influences insecticides and fungicides

budget share with estimated coefficients close from zero for insecticides and included between 0.22 and

0.31 for fungicides. Moreover, we find a positive influence of spring temperature in 2001 to explain her-

bicides, and negative for insecticides with no significant effect for rainfall. On the opposite, temperature

is not relevant in 2006, but rainfall of the seed-time year is positively related to herbicides and negatively

to insecticides and fungicides.

[INSERT Tables 4 and 5 HERE]
12Available upon request from the authors.
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To measure price sensitivity of farmers, we compute expenditure and prices elasticities of demand at

the sample means of the explanatory variables. The system is estimated considering pesticide expenditure

and the other inputs are not included, so we compute conditional elasticities. The elasticities of the

reference group are computed applying theoretical restrictions, and their variances are estimated through

gradient for (1) and (2). We first compute these elasticities for the whole sample, and second by crop, see

Tables 6 and 7.

[INSERT Tables 6 and 7 HERE]

As expected elasticities of the censored categories of treatment, which are mainly related to insec-

ticides, decrease for the two cross-sections using SY framework. Nevertheless, they are not always

invariant on the choice of reference group when censoring occurs, see column (2) of Tables 6 and 7.

They decrease if insecticide is set as reference category instead of fungicide. Expenditure elasticities are

mainly close to the unit value, positives and significants at 1%. These elasticities suggest that pesticides

are mainly considered as normal good, illustrating that demand is inelastic to pesticide expenditure vari-

ations. For example, our estimated expenditure elasticity for a 1 % increase in total pesticide expenditure

would increase the demand for herbicides by 0.9% in all the samples excepted for TFI2006, where it will

increase by 1%. The exception is for fungicides. Pesticide expenditure elasticities are often higher than

1, so fungicides expenditure will increase if pesticide expenditure increases too. This result confirms

agronomic results. More precisely, these elasticities are higher for durum wheat than for tender wheat or

for barley. This result could justify that some fungicides treatments could be prevent by choosing treated

varieties of crops. Finally, the confidence intervals are reported in Tables 6 and 7 according to a level of

99%. They enable the comparison between estimated elasticities among the differents samples. Indeed,

the elasticities are generally higher for TFI respect to DOSE. Nonetheless, for herbicides the confidence

intervals often overlap. This is not true for pesticide expenditure of insecticides and fungicides. More-

over, confidence intervals overlap between TFI2001 and TFI2006. This result is valid for the two DOSE

cross-sections.
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Own-price elasticities for herbicides and fungicides are included between 0.7 and 1, in absolute value,

indicating a low response to change in the pesticides prices. The own-price elasticities for insecticides

are higher than 1 indicating either it illustrates the fact that: the input is technically important to maintain

a constant level of production; or their is no or few substitutes for this input which lead to the same

efficiency. Let us remind that in application to the directive 91/414/CE and the REACH regulation (2003)

many products have been banned between 2001 and 2006. Durum wheat is smaller market in term of

agricultural utilized area, so higher estimated elasticities are justified by the weak number of products

for this crop leading to few substitutes for insecticides. The estimate results confirm this fact because

estimated own-price elasticities are lower in 2001 than in 2006. This result remains valid for DOSE and

TFI.

Cross price elasticities are not reported13. They are mainly significantly negative illustrating comple-

mentarities between the categories of treatments.

6 Conclusion

This article focuses on estimating a demand system of pesticides uses of French farmers. The econometric

methodology proceeds first by estimating a standard system of equation, and censoring is introduced in

the spirit of SY via a two-step estimation procedure. We have also considered the FIML estimator to deal

with adding-up restrictions and efficiency as suggested by Yen et al. (2003).

The analysis of pesticides practices helps to answer the following questions: How taxes could affect

pesticides uses? Is a unique tax efficient to reduce pesticides uses? In term of public policy, this led to

measure the effect of a tax on quantities applied by farmer. These first results in terms of estimated elas-

ticities illustrates the fact that unique tax on pesticides products is inefficient, but for more consistency

regulatory cost on setting such a tax should be introduced to perform full conclusions. For further research

it would be interesting to overpass homogeneity assumption of products, and consider on product differ-

entiation to estimate demand of farmer and understand the influence of products individual characteristics

13They are available upon request from the authors.
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to justify farmer choices.
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Table 1: Descriptive Statistics
2001, N=893 2006, N=709

Variable Associated Doses TFI Proportion Doses TFI Proportion
parameter Mean Mean of zero Mean Mean of zero

(Std. Dev) (Std. Dev) (Std. Dev) (Std. Dev)
Budget Share

Herbicides w1 0.492 0.521 4.93 0.558 0.615 4.65
(0.307) (0.356) (0.301) (0.357)

Insecticides w2 0.011 0.032 88.80 0.007 0.019 94.22
(0.051) (0.112) (0.04) ( 0.096)

Fungicides w3 0.496 0. 447 20.83 0.435 0.365 25.53
(0.306) (0.347) (0.306) ( 0.348)

Composition and demographics
Dummies (yes=1 ; no=0)
Tender wheat 58.45 54.30
Durum wheat 8.73 13.82
Barley 32.81 31.88
Reg1 λ1 11.87 10.72
Reg2 λ2 28.56 25.67
Reg3 λ3 16.57 13.40
Reg4 λ4 13.77 14.81
Reg5 λ5 24.08 26.23
Reg6 λ6 5.15 9.17
Plowing λ7 85.11 66.29
Organic fertilizer λ8 9.97 9.31
Inorganic fertilizer λ9 98.66 97.18
Mechanical weeding λ10 3.36 0.56

Continuous variables
Yield λ11 55.69 58.80

(17.57) (17.14)
Age λ12 46.03 47.99

(10.72) (10.05)

Distribution of the number of treatment type
1 type of treatment 24.30 29.48
2 type of treatments 65.96 65.44
3 type of treatments 9.74 5.08

height Source : Personal computation.
Forwj , DOSES (resp TFI) are used to compute mean budget share if real DOSE (resp. TFI) are used.
Regi are the following :
Reg1: Bretagne, Basse-Normandie, Pays de la Loire;
Reg2: Ile de France, Champagne-Ardennes, Picardie, Haute-Normandie, Centre, Nord Pas-de-Calais;
Reg3: Lorraine, Alsace, Franche-Comté;
Reg4: Bourgogne, Rhône-Alpes, Auvergne;
Reg5: Poitou-Charentes, Aquitaine, Midi-Pyrénées, Limousin;
Reg6: Languedoc-Roussillon, Provence-Alpes-Cote-d’Azur.
Yield is measured in quintal per hectare.

Table 2: Level of Censoring per Crop and Year
Crop Year w1 w2 w3
Bread Wheat 2001 4.98 87.93 21.26

2006 3.64 95.58 27.79
Durum Wheat 2001 1.28 94.87 37.18

2006 6.12 88.78 31.63
Barley 2001 5.80 88.74 15.70

2006 5.75 94.25 19.03
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Table 3: Pearson’s Correlation Coefficients

w1 w2 w3 Org. Inorg. Plowing Mech. Age Yield
Fert. Fert. Weed.

DOSE 2001 w1 1.000
w2 -0.116 ‡ 1.000
w3 -0.986 ‡ -0.051 1.000
Org. Fert. 0.132 ‡ 0.007 -0.134 ‡
Inorg. Fert. -0.071 † 0.012 0.069 † -0.026 1.000
Plowing 0.076 † -0.052 -0.067 † 0.024 0.006 1.000
Mech. Weed. 0.143 ‡ -0.012 -0.142 ‡ 0.021 0.022 -0.027 1.000
Age 0.056 * -0.085 † -0.042 -0.040 0.018 0.000 0.059 * 1.000
Yield -0.327 ‡ 0.083 † 0.315 ‡ -0.180 ‡ 0.051 -0.029 -0.001 -0.120 ‡ 1.000

2006 w1 1.000
w2 -0.129 ‡ 1.000
w3 -0.988 ‡ -0.026 1.000
Org. Fert. 0.094 † 0.016 -0.098 ‡ 1.000
Inorg. Fert. -0.161 ‡ 0.024 0.159 ‡ -0.151 ‡ 1.000
Plowing 0.007 -0.025 -0.003 0.116 ‡ 0.023 1.000
Mech. Weed. 0.047 -0.011 -0.046 0.041 -0.215 ‡ -0.026 1.000
Age 0.037 0.032 -0.042 -0.099 ‡ -0.056 0.014 -0.019 1.000
Yield -0.303 ‡ -0.023 0.309 ‡ -0.108 ‡ 0.103 ‡ -0.040 -0.096 † -0.018 1.000

TFI 2001 w1 1.000
w2 -0.232 ‡ 1.000
w3 -0.950 ‡ -0.085 † 1.000
Org. Fert. 0.120 ‡ -0.033 -0.112 ‡ 1.000
Inorg. Fert. -0.051 0.000 0.052 -0.026 1.000
Plowing -0.051 0.009 0.049 0.024 0.006 1.000
Mech. Weed. 0.068 † 0.015 -0.075 † 0.021 0.022 -0.027 1.000
Age 0.046 -0.070 † -0.025 -0.040 0.018 0.000 0.059 * 1.000
Yield -0.326 ‡ 0.156 ‡ 0.284 ‡ -0.180 ‡ 0.051 -0.029 -0.001 -0.120 ‡ 1.000

2006 w1 1.000
w2 -0.228 ‡ 1.000
w3 -0.964 ‡ -0.041 1.000
Org. Fert. 0.072 * 0.013 -0.078 † 1.000
Inorg. Fert. -0.101 ‡ 0.034 0.094 † -0.151 ‡ 1.000
Plowing -0.106 ‡ -0.017 0.113 ‡ 0.116 ‡ 0.023 1.000
Mech. Weed. 0.028 -0.015 -0.025 0.041 -0.215 ‡ -0.026 1.000
Age 0.020 0.006 -0.022 -0.099 ‡ -0.056 0.014 -0.019 1.000
Yield -0.239 ‡ -0.010 0.248 ‡ -0.108 ‡ 0.103 ‡ -0.040 -0.096 † -0.018 1.000

Level of significance : ‡=1% ; †=5% ; *=10%.
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Table 4: Estimation of the Demand System with DOSE for 2001 (N=893) and 2006 (N=709)
Uncensored Demand System Censored Demand System

FGLS SY Two-Step procedure FIMLi

(1) (2) (3)
Ref. Fungicides Ref. Fungicides Ref. Insecticides

w1 w2 w1 w2 w1 w3 w1 w2 w3
Estimates Estimates Estimates Estimates Estimates Estimates Estimates Estimates Estimates
Std. Err. Std. Err. Std. Err. Std. Err. Std. Err. Std. Err. Std. Err. Std. Err. Std. Err.

2001 Intercept 1.0710* 0.1293 1.8466† 0.2990‡ 1.3626* -0.7975* 1.110 0.033 -0.140
0.5647 0.0985 0.7883 0.0978 0.7800 0.4840 0.798 0.486 0.835

Priceherb 0.1334‡ -0.0129‡ 0.1603‡ -0.0157‡ 0.1497‡ -0.1461‡ 0.136‡ -0.014‡ -0.122‡
0.0097 0.0018 0.0117 0.0023 0.0119 0.0118 0.014 0.001 0.014

Priceins -0.0129‡ 0.0353‡ -0.0157‡ 0.0445‡ -0.0036 -0.0386‡ -0.014‡ 0.027‡ -0.014‡
0.0018 0.0018 0.0023 0.0023 0.0049 0.0053 0.001 0.001 0.001

Pricefng -0.1205‡ -0.0225‡ -0.1446‡ -0.0288‡ -0.1461‡ 0.1847‡ -0.122‡ -0.014‡ 0.136‡
0.0096 0.0020 0.0116 0.0027 0.0118 0.0133 0.014 0.001 0.015

Expenditure -0.0742‡ -0.0060‡ -0.1007‡ -0.0163‡ -0.0797‡ 0.0990‡ -0.115‡ -0.005‡ 0.120‡
0.0079 0.0014 0.0104 0.0025 0.0101 0.0126 0.012 0.001 0.012

Org Fert. 0.0543† 0.0057 0.0337 0.0140† 0.0771† -0.0811† 0.087‡ 0.043† -0.086†
0.0266 0.0046 0.0338 0.0065 0.0332 0.0349 0.033 0.020 0.034

Inorg Fert. -0.1473† 0.0070 -0.2844‡ 0.0003 -0.2080† 0.2248† -0.152‡ 0.014 0.152†
0.0667 0.0116 0.0899 0.0180 0.0884 0.0971 0.055 0.057 0.071

Plowing 0.0341 -0.0103† 0.0538* -0.0080 0.0416 -0.0355 0.034 -0.055‡ -0.036
0.0235 0.0041 0.0286 0.0052 0.0285 0.0281 0.038 0.016 0.039

Age -0.0001 -0.0003‡ -0.0002 -0.0003 -0.0001 0.0005 -0.001 0.000 0.001
0.0007 0.0001 0.0009 0.0002 0.0009 0.0009 0.001 0.001 0.001

Mech. Weed. 0.0028 -0.0073 0.0176 -0.0121 -0.0106 0.0058 -0.005 0.006 0.002
0.0475 0.0083 0.0571 0.0114 0.0570 0.0617 0.068 0.040 0.069

Yield -0.2122‡ 0.0148‡ -0.2706‡ -0.0057 -0.2590‡ 0.2484‡ -0.257‡ 0.104‡ 0.247‡
0.0286 0.0050 0.0349 0.0082 0.0347 0.0421 0.040 0.028 0.041

Autumnt−1 -0.0109 0.0034 -0.0128 0.0053 -0.0274 0.0178 0.008 -0.028 -0.006
0.0362 0.0063 0.0434 0.0072 0.0435 0.0386 0.054 0.029 0.055

Springt 0.0622‡ -0.0071* 0.0773‡ -0.0042 0.0702‡ -0.0653‡ 0.082† 0.005 -0.084†
0.0212 0.0037 0.0255 0.0045 0.0254 0.0244 0.032 0.014 0.033

Raint−1 -0.0010‡ 0.0000 -0.0008† -0.0001 -0.0011‡ 0.0011‡ -0.002‡ 0.000 0.002‡
0.0003 0.0001 0.0004 0.0001 0.0004 0.0004 0.000 0.000 0.000

Raint 0.0004 0.0000 0.0005 0.0000 0.0003 -0.0003 0.001 -0.000 -0.001
0.0004 0.0001 0.0005 0.0001 0.0005 0.0004 0.001 0.000 0.001

δwj
-3.7235‡ -0.5485‡ -0.1598 1.4831†
1.3819 0.1446 1.2539 0.6874

σwj
0.2316 0.0426 0.2352 0.0428 0.2371 0.2333 0.2915 0.073 0.2993

ρw1,w2
-0.1000 -0.0770 -0.0151

ρw1,w3
-0.9364 -0.9978

ρw2,w3 -0.0256
SSR 46.3513 1.5703 46.0639 1.5284 46.8398 45.3212
R2 0.4624 0.3297 0.4533 0.3469 0.4441 0.4561
LL 177.18
AIC -182.37

2006 Intercept -1.6615 0.0638 -0.8700 0.4779‡ 1.2685 -0.8642 -1.3716‡ 0.0268 2.3498‡
1.0104 0.1515 1.4623 0.1037 1.4114 0.6397 0.3568 1.4620 0.3568

Priceherb 0.1262‡ -0.0040† 0.1501‡ -0.0048† -0.1405‡ 0.1907‡ 0.1250‡ -0.0049‡ -0.1201‡
0.0108 0.0016 0.0132 0.0022 0.0133 0.0152 0.0174 0.0017 0.0176

Priceins -0.0040† 0.0393‡ -0.0048† 0.0491‡ 0.1369‡ -0.1405‡ -0.0049‡ 0.0231‡ -0.0182‡
0.0016 0.0019 0.0022 0.0025 0.0131 0.0133 0.0016 0.0047 0.0016

Pricefng -0.1222‡ -0.0353‡ -0.1454‡ -0.0443‡ 0.0035 -0.0502‡ -0.1201‡ -0.0182‡ 0.1383‡
0.0105 0.0022 0.0129 0.0029 0.0044 0.0061 0.0176 0.0016 0.0176

Expenditure -0.0736‡ -0.0086‡ -0.1035‡ -0.0154‡ -0.0825‡ 0.1107‡ -0.1830‡ -0.0017‡ 0.1847‡
0.0093 0.0014 0.0136 0.0021 0.0126 0.0132 0.0200 0.0006 0.0201

Org Fert. 0.0239 0.0015 0.0271 0.0033 0.0141 -0.0178 0.0538 0.0417 -0.0550
0.0318 0.0048 0.0382 0.0068 0.0381 0.0433 0.0523 0.0709 0.0525

Inorg Fert. -0.2115‡ 0.0057 -0.1961‡ 0.0010 -0.2669‡ 0.2838‡ -0.2310† 0.0158 0.2383†
0.0577 0.0086 0.0725 0.0166 0.0706 0.1046 0.1130 0.0585 0.1145

Plowing -0.0296 -0.0023 -0.0432* -0.0025 -0.0246 0.0321 -0.0458 -0.0213 0.0459
0.0206 0.0031 0.0248 0.0040 0.0247 0.0255 0.0301 0.0409 0.0301

Age 0.0006 0.0002† 0.0006 0.0002 0.0003 -0.0005 0.0010 0.0007 -0.0010
0.0009 0.0001 0.0011 0.0002 0.0011 0.0011 0.0013 0.0020 0.0013

Mech. Weed. -0.0556 -0.0187 0.0914 -0.0295 -0.0493 0.0144 -0.0661 -0.0182 0.0820
0.1226 0.0183 0.1710 0.0286 0.1668 0.1807 0.3797 0.0921 0.3763

Yield -0.2020‡ 0.0123† -0.2557‡ -0.0217 -0.2584‡ 0.2609‡ -0.2437‡ 0.0341 0.2399‡
0.0390 0.0058 0.0471 0.0139 0.0470 0.0856 0.0634 0.0969 0.0636

Autumnt−1 0.0426 0.0075 0.0085 -0.0116 -0.1721† 0.1882‡ 0.0251 0.0191 -0.0287
0.0731 0.0110 0.0866 0.0089 0.0861 0.0559 0.0445 0.1153 0.0443

Springt -0.0409 -0.0051 -0.0020 0.0086 0.1286* -0.1480‡ -0.0299 -0.0038 0.0312
0.0642 0.0096 0.0773 0.0085 0.0766 0.0532 0.0427 0.1058 0.0426

Raint−1 0.0090‡ -0.0002 0.0089‡ -0.0004† 0.0039 -0.0038‡ 0.0109‡ -0.0018 -0.0109‡
0.0021 0.0003 0.0026 0.0002 0.0025 0.0013 0.0006 0.0032 0.0006

Raint -0.0035‡ 0.0001 -0.0036‡ 0.0001 -0.0021‡ 0.0022‡ -0.0044‡ 0.0005 0.0044‡
0.0007 0.0001 0.0008 0.0001 0.0008 0.0005 0.0004 0.0011 0.0004

δwj
-0.4375 -0.7587‡ -0.0076 1.5689
2.0398 0.1592 1.7868 0.9703

σwj
0.2447 0.0370 0.2504 0.0381 0.2530 0.2447 0.3252 0.2765 0.3257

ρw1,w2 -0.2111 -0.2147 -0.0271
ρw1,w3

-0.9579 -0.9994
ρw2,w3

0.0146
SSR 40.7176 0.9297 40.6938 0.9435 41.5533 38.8748
R2 0.3986 0.4226 0.3969 0.4131 0.3842 0.4146
LL 1020
AIC -1868

"Note" : Level of significance : ‡=1% ; †=5% ; *=10%.
iFor DOSE2006 , we report the QML results.
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Table 5: Estimation of the Demand System with TFI for 2001 (N=893) and 2006 (N=709)
Uncensored Demand System Censored Demand System

FGLS SY Two-Step procedure FIML
(1) (2) (3)

Ref. Fungicides Ref. Fungicides Ref. Insecticides
w1 w2 w1 w2 w1 w3 w1 w2 w3

Estimates Estimates Estimates Estimates Estimates Estimates Estimates Estimates Estimates
Std. Err. Std. Err. Std. Err. Std. Err. Std. Err. Std. Err. Std. Err. Std. Err. Std. Err.

2001 Intercept 0.8069 0.3150† 1.6674* 0.9028‡ 1.1845 -1.2553* 1.0898 -0.0218 -0.0686
0.6562 0.1393 0.8950 0.1525 0.8894 0.6506 1.3274 0.3870 1.5225

Priceherb 0.1203‡ -0.0154‡ 0.1475‡ -0.0210‡ 0.1486‡ -0.1323‡ 0.1595‡ -0.0199‡ -0.1395‡
0.0064 0.0014 0.0080 0.0019 0.0080 0.0080 0.0148 0.0033 0.0164

Priceins -0.0154‡ -0.0800‡ -0.0210‡ 0.1188‡ -0.1323‡ 0.2327‡ -0.0199‡ 0.0836‡ -0.0636‡
0.0014 0.0025 0.0019 0.0032 0.0080 0.0097 0.0033 0.0031 0.0039

Pricefng -0.1049‡ 0.0955‡ -0.1265‡ -0.0978‡ -0.0163‡ -0.1005‡ -0.1395‡ -0.0636‡ 0.2032‡
0.0064 0.0025 0.0079 0.0032 0.0034 0.0049 0.0164 0.0039 0.0182

Expenditure -0.0163* -0.0113‡ -0.0292† -0.0214‡ -0.0071 0.0383‡ -0.0537‡ -0.0115‡ 0.0652‡
0.0097 0.0021 0.0126 0.0029 0.0122 0.0126 0.0193 0.0039 0.0209

Org Fert. 0.0697† 0.0004 0.0537 0.0178* 0.1150‡ -0.1141‡ 0.1071* -0.0247 -0.1142*
0.0307 0.0065 0.0382 0.0095 0.0376 0.0424 0.0550 0.0169 0.0598

Inorg Fert. -0.1481* 0.0055 -0.2921‡ -0.0402 -0.1806* 0.3033‡ -0.1611* 0.0117 0.1547
0.0771 0.0163 0.1018 0.0263 0.1000 0.1172 0.0954 0.0414 0.1306

Plowing 0.0076 -0.0071 0.0257 0.0059 -0.0011 -0.0140 0.0220 -0.0170 -0.0178
0.0271 0.0058 0.0328 0.0076 0.0327 0.0340 0.0630 0.0138 0.0674

Age 0.0003 -0.0004† 0.0006 -0.0005† 0.0008 -0.0002 -0.0022 -0.0004 0.0025
0.0008 0.0002 0.0010 0.0002 0.0010 0.0011 0.0017 0.0005 0.0018

Mech. Weed. 0.0574 -0.0285† 0.0381 -0.0263 0.0708 -0.0455 0.0296 -0.0048 -0.0113
0.0544 0.0116 0.0650 0.0161 0.0650 0.0719 0.1089 0.0288 0.1176

Yield -0.2721‡ 0.0471‡ -0.3553‡ -0.0151 -0.3086‡ 0.3254‡ -0.3432‡ 0.1039‡ 0.3147‡
0.0325 0.0069 0.0393 0.0152 0.0390 0.0653 0.0724 0.0216 0.0789

Autumnt−1 -0.0532 0.0062 -0.0803 -0.0052 -0.0894* 0.0737 -0.0321 0.0239 0.0224
0.0418 0.0089 0.0500 0.0107 0.0499 0.0477 0.0848 0.0244 0.0954

Springt 0.1013‡ -0.0178‡ 0.1300‡ -0.0069 0.1079‡ -0.1031‡ 0.1648‡ -0.0257† -0.1650‡
0.0246 0.0052 0.0294 0.0066 0.0294 0.0295 0.0552 0.0108 0.0606

Raint−1 -0.0007* 0.0000 -0.0002 -0.0001 -0.0007 0.0007* -0.0020‡ -0.0001 0.0021†
0.0004 0.0001 0.0005 0.0001 0.0005 0.0004 0.0008 0.0002 0.0008

Raint 0.0002 -0.0001 0.0000 -0.0002† -0.0003 0.0003 0.0004 0.0001 -0.0005
0.0005 0.0001 0.0006 0.0001 0.0006 0.0005 0.0010 0.0003 0.0011

δwj
-3.7911‡ -1.5335‡ 1.0066 2.3062†
1.4163 0.2253 1.2757 0.9404

σwj
0.2719 0.0786 0.2732 0.0774 0.2763 0.2738 0.4313 0.0861 0.4647

0.0173 0.0041 0.0194
ρw1,w2

-0.1145 -0.1075 -0.0882
ρw1,w3

-0.9495 -0.9872
ρw2,w3 -0.0639

SSR 63.8736 5.3392 62.1658 4.9898 63.5710 62.4400
R2 0.4452 0.5222 0.4490 0.5525 0.4365 0.4193
LL 260.09
AIC -348.1824

2006 Intercept -1.9299* 0.2861* -2.1068 0.6042‡ 0.5308 -0.6585 -2.0043 0.2187 2.7905
1.1500 0.1632 1.5639 0.1198 1.5362 0.7532 2.2553 1.2232 2.3264

Priceherb 0.1157‡ -0.0120‡ 0.1488‡ -0.0147‡ 0.1521‡ -0.1435‡ 0.1323‡ -0.0153‡ -0.1170‡
0.0076 0.0011 0.0098 0.0016 0.0097 0.0097 0.0159 0.0028 0.0163

Priceins -0.0120‡ -0.1003‡ -0.0147‡ 0.1393‡ -0.0086† 0.2672‡ -0.0153‡ 0.1013‡ -0.0860‡
0.0011 0.0023 0.0016 0.0029 0.0038 0.0119 0.0028 0.0033 0.0045

Pricefng -0.1037‡ 0.1123‡ -0.1342‡ -0.1246‡ -0.1435‡ -0.1237‡ -0.1170‡ -0.0860‡ 0.2030‡
0.0075 0.0022 0.0097 0.0030 0.0097 0.0066 0.0163 0.0045 0.0171

Expenditure 0.0223† -0.0093‡ 0.0156 -0.0137‡ 0.0363† -0.0113 0.0020 -0.0091† 0.0071
0.0113 0.0016 0.0157 0.0023 0.0145 0.0142 0.0174 0.0039 0.0180

Org Fert. 0.0501 0.0072 0.0592 0.0105 0.0505 -0.0637 0.0830* 0.0108 -0.0883*
0.0361 0.0051 0.0434 0.0077 0.0433 0.0490 0.0499 0.0239 0.0509

Inorg Fert. -0.2743‡ 0.0165* -0.3167‡ 0.0217 -0.3833‡ 0.3537‡ -0.3204‡ 0.0310 0.3281‡
0.0657 0.0093 0.0811 0.0191 0.0796 0.1214 0.1062 0.1329 0.1100

Plowing -0.0236 -0.0023 -0.0174 -0.0015 0.0006 0.0109 -0.0033 -0.0241 0.0119
0.0234 0.0033 0.0285 0.0046 0.0283 0.0289 0.0370 0.0191 0.0381

Age 0.0007 0.0003‡ 0.0010 0.0003 0.0006 -0.0009 0.0012 0.0003 -0.0015
0.0010 0.0001 0.0012 0.0002 0.0012 0.0012 0.0015 0.0007 0.0016

Mech. Weed. -0.0454 -0.0349* 0.0418 -0.0602* -0.1291 0.0965 -0.0794 -0.0204 0.0996
0.1392 0.0198 0.1900 0.0316 0.1865 0.2008 0.2526 0.2286 0.9749

Yield -0.2951‡ 0.0327‡ -0.3386‡ -0.0006 -0.3453‡ 0.3111‡ -0.3458‡ 0.0632* 0.3443‡
0.0435 0.0062 0.0524 0.0172 0.0524 0.1085 0.0663 0.0355 0.0687

Autumnt−1 0.0328 0.0132 0.0538 0.0065 -0.1406 0.1570† 0.0337 0.0234 -0.0534
0.0830 0.0118 0.0973 0.0103 0.0972 0.0650 0.1748 0.1039 0.1794

Springt -0.0363 -0.0063 -0.0486 -0.0028 0.0911 -0.1182* -0.0399 -0.0170 0.0520
0.0729 0.0104 0.0864 0.0097 0.0859 0.0614 0.1546 0.0944 0.1586

Raint−1 0.0084‡ -0.0009‡ 0.0093‡ -0.0010‡ 0.0036 -0.0021 0.0096† -0.0009 -0.0092*
0.0024 0.0003 0.0028 0.0002 0.0028 0.0015 0.0046 0.0026 0.0048

Raint -0.0029‡ 0.0002† -0.0033‡ 0.0002† -0.0016* 0.0013† -0.0034† 0.0002 0.0034†
0.0007 0.0001 0.0009 0.0001 0.0009 0.0006 0.0014 0.0008 0.0015

δwj
1.5481 -0.9083‡ 1.1686 1.1837
1.9080 0.1859 1.7169 1.1670

σwj
0.2793 0.0562 0.2821 0.0586 0.2843 0.2731 0.3448 0.0821 0.3547

0.0139 0.0146 0.0157
ρw1,w2

-0.1460 -0.1471 -0.1025
ρw1,w3 -0.9533 -0.9883
ρw2,w3

-0.0198
SSR 53.0519 2.1470 51.6476 2.2287 52.4419 48.3949
R2 0.4136 0.6688 0.4289 0.6558 0.4201 0.4365
LL 271.53
AIC -371.07

Level of significance : ‡=1% ; †=5% ; *=10%.
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