
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 1 

 
CLIMATE CHANGE INFLUENCES ON THE RISK OF AVIAN INFLUENZA 

OUTBREAKS AND ASSOCIATED ECONOMIC LOSS 
 

Jianhong E. Mu 
Research Assistant  

mujh1024@gmail.com 
 

Bruce A. McCarl 
University Distinguished Professor 

mccarl@tamu.edu 
  

Ximing Wu 
Associate Professor 
xwu@ag.tamu.edu 

 
Department of Agricultural Economics 

Texas A&M University 
College Station, TX, 77843-2124 

 
Li Gan 

Professor 
gan@econmail.tamu.edu 
Department of Economics 
Texas A&M University 

College station, TX, 77843 
 
 

Selected Paper prepared for presentation at the Agricultural & Applied Economics 
Association’s 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, 
July 24-26, 2011 
 
 
 
 
 
 
Copyright 2011 by [Jianhong Mu, Bruce McCarl, Ximing Wu and Li Gan]. All rights 
reserved. Readers may make verbatim copies of this document for non-commercial 
purposes by any means, provided that this copyright notice appears on all such copies. 
 

 



 2 

 

Abstract:  

This paper examines the effect that climate has on Avian Influenza outbreak probability.  

The statistical analysis shows across a broad region the probability of an outbreak 

declines by 0.22% when the temperature rises 1 Celsius degree and increases by 0.34% 

when precipitation increases by 1millimeter. These results indicate that the realized 

climate change of the last 20 years not only has been a factor behind recent HPAI 

outbreaks, but that climate change is likely to play an even greater role in the future.  The 

statistical results indicate that overall, the risk of an AI outbreak has been increased by 

51% under past climate change and 3-4% under future climate change. An economic 

evaluation shows the increased probability of outbreaks has caused damages of about 

$107 million in China and $29 million in the United States due to past climate change.  In 

the year of 2011-2030, for countries with a high proportion of chicken production, 

economic loss could reach $105-$146 million in China and $12-$18 million in the United 

Sates.  

 

Keywords: Climate change, Avian Influenza outbreaks, GDP loss 
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Since 2003, epidemics of the most dangerous avian influenza (AI) strain - high 

pathogenic avian influenza (HPAI) - have occurred with unprecedented frequency across 

an ever wider part of the globe. This strain was initially observed in East and Southeast 

Asia and then migrated to Russia, the Middle East, Europe, Africa and South Asia (Sims 

2007). Currently, the list of countries where AI outbreaks have occurred is still expanding 

(CIRAD 2010).  

In the last decade, HPAI has caused significant damage across the globei. 

Determining the factors involved in its spread and producing risk probabilities is 

important targeting surveillance and control measures plus ultimately in loss reduction 

(Paul et al. 2010) plus in planning for disease prevention.  

Climate change is a possible factor in the widening spread as it may alter 

conditions that are involved with disease transmission and persistence including wild bird 

migration patterns. This paper conducts a statistical examination on the extent to which 

HPAI outbreak risk is being affected by current climatic conditions and 

realized/projected climate change. In particular, we examine how temperature, 

precipitation, seasonality and regional characteristics affect outbreak probability using 

data from the events in Asia, Europe, Africa and North America. Then we use the 

estimated statistical results to simulate how much the outbreak probability has shifted due 

to past and projected climate change. Additionally, we evaluate the increase in expected 

cost of AI outbreaks stimulated by past and projected future climate change.  
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This paper is organized as follows. Section 2 and 3 reviews background 

information on HPAI and previous studies; Section 4 presents the statistical models and 

describes the data; Section 5 interprets estimation results, predicts the risk of HPAI 

outbreaks under past and future climate change and evaluates associated economic losses 

and section 6 presents conclusions.  

Background Information on AI 

AI, commonly called “bird flu”, is a contagious animal disease that infects birds 

and some mammals (WHO 2005). The strains of AI are divided into two sub-groups 

based on their contagiousness and symptom severity: high pathogenic avian influenza 

(HPAI) and low pathogenic avian influenza (LPAI). The LPAI is less contagious and 

cause no harm to affected species, while the HPAI virus, such as the H5N1 strain, spreads 

rapidly with a high mortality rate that can infect up to 100% of contact birds within 48 

hours plus can spread to humans (OIE 2008). 

AI was initially detected in poultry on a farm in Scotland, UK, in 1959 (Fang et al. 

2008) and has since been identified in Europe, North America, Australia (Alexander 2000) 

Southeast and Central Asia (Peiris et al. 2007), Eastern Europe and Africa. As of summer 

2010, twelve countries were experiencing an ongoing epidemic of at least one strain of 

AI (CIRAD 2010). 

Outbreaks of the disease often lead to severe economic losses. HPAI outbreaks 

led to almost 36 billion chickens being culled in China between 2004 and 2009. In 

Vietnam, indirect losses due to outbreaks represented are estimates at about 45 to 135 

million US dollars (Brambhatt 2005; McLeod et al. 2006).  In Laos, total loss amounted 
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to 3% of the national flock, with approximately 80% of the culled birds in a single 

province (Rushton, et al. 2005). As a consequence of these sizable losses, McLeod et al. 

(2006) estimated that a South-East Asia wide AI pandemic, including spillover effects, 

could result in a 1.5% GDP growth reduction for countries heavily invested in poultry. 

AI and Climate Change Literature Review 

In order to estimate how climate change affects the probability of AI outbreaks, 

an understanding of factors affecting the spread of the disease is needed. The literature 

suggests that climate change may alter several items involved with AI spread and 

persistence.  

Climate has been found to alter disease survival and disease vector behavior.  In 

particular experimental evidence shows low temperature and high relative humidity 

conditions increase the persistence and stability of the AI virus (Animal Health Australia 

2005; WHO 2007). Gilbert et al. (2008) states that climate change would almost certainly 

influence the AI virus transmission cycle, and directly affect virus survival outside the 

host.  

In terms of vectors, there has been considerable effort investigating how the HPAI 

virus enters into unaffected countries. The main identified pathways are wild bird 

migration, wild bird trade and poultry/ poultry products transport (Chen al. 2005; Ward et 

al. 2008a; 2008b; 2009; Peiris et al. 2007). In addition, as a zoonotic disease, human 

travel and infection provides another possible channel for HPAI introduction.  Capua and 

Alexander (2004) and Gilbert et al. (2008) argue that climate change would lead to 

alterations in wild bird migratory paths.   
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Considerable circumstantial evidence from Europe, Russia and Mongolia indicate 

that wild birds played a significant role in AI spread (Gilbert et al. 2006; Irza 2006). 

Kilpatrick et al. (2006) and the European Food Safety Agency (2006) both conclude that 

most of the HPAI introductions to Europe were via wild bird migration movements. 

Peiris et al. (2007) mainly attributes the increased outbreak frequency to the fast 

expanding, intensive poultry industry as well as greater movement of live poultry and 

poultry products. Ward et al. (2008a; 2008b; 2009) analyze the HPAI cases in Romania 

and conclude that the environment and landscape (specifically the Danube River Delta) 

played a critical role in introduction and initial spread.  They also indicate that the 

movement of poultry might have introduced the infection into central Romania during 

spring 2006. 

Studies in Thailand, Vietnam, Indonesia and China provide other insights, 

suggesting that human infection and poultry outbreaks are enhanced by several risk 

factors, including population density, poultry density and local/environmental factors like 

the incidence of rice paddy fields, water sources, transportation and precipitation 

(Yupiana et al. 2010; Gilbert et al. 2008; Tiensin et al. 2009; Pfeiffer et al. 2007; Fang et 

al. 2008; Paul et al. 2010; Hogerwerf et al. 2010).  

Results in Fang et al. (2008) indicate that distance to the nearest main city, and 

distance to the nearest body of water and distance to the nearest highway contribute to the 

spread of the disease.  They also find that higher levels of annual precipitation have a 

negative effect on outbreak risk. Yupiana et al. (2010) analyze data from Indonesia and 

find that the number of HPAI outbreaks increases when poultry density or road density 
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increases. Paul et al. (2010) show a progressive increase in HPAI risk with an increase in 

poultry density for both chickens and ducks, and they also find that areas located near 

major cities and highway junctions constitute “hot spots” for HPAI risk. Hogerwerf et al. 

(2010) conduct a global study and find that maximum temperature has significant effects, 

but that it was much less important than agro-ecological and socio-demographic factors. 

HPAI outbreaks have received worldwide attentions and previous studies have 

examined factors that may contribute to the risk and the spread of HPAI outbreaks. 

However, there are three limitations in these studies,  

• Most neglected climate factors focusing on geographic and social-economic 

characteristics rather than temperature and precipitation;  

• Few studies have examined the relationship between climate factors/climate 

change and the HPAI outbreaks across the totality of seasons and locations.  

• These studies have not addressed the economic loss associated with climate 

change.  

This study extends previous studies addressing the shortcomings identified above 

plus examines the consequences of climate change as realized in the last 20 years and as 

projected.  

Model and Data 

We first present statistical models for the probability of HPAI outbreaks, then 

describe the data used in the estimation of the proposed models. 
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Econometric model 

We will estimate a relationship between the probability of HPAI outbreaks, a 

number of regional climate factors and other production characteristic plus the lagged 

probability of outbreaks. This is done using the basic functional form,  

*
, 1it it i t i ity x y c eβ ρ −= + + +  

where  

*
ity  is the latent dependent variable. Instead of observing *

ity , we observe only a 

binary variable indicating the sign of *ity , 

0y if

 

0y  if

   

0

1

*
it

*
it

≤

>









=ity  

and ity indicating whether a region i  had any outbreaks in time period t . 

itx  is a vector of independent, contemporaneous explanatory variables and 

including the following: 

• Mean temperature and total precipitation 

• Squared precipitation due to the conflict results in previous literature (Animal 

Health Australia 2005; WHO 2007; Fang et al. 2008) 

• Seasonal dummies with season fall as the base: In the northern hemisphere, AI 

infection rates are higher during the spring and fall migration periods (Krauss et al. 

2004) 

• Dummies of reflecting temperature extremes: HPAI viruses can survive for long 

periods in the environment, especially when temperatures are low (WHO 2006). 
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According to Shahid et al.(2009), avian influenza virus H5N1 retained its 

infectivity at 4°C for more than 100 days and virus lost its infectivity after 24 

hours when kept at room temperature (28°C). Thus two temperature indices are 

constructed. Cold_Month is 1 when the mean temperature is lower than 4oC, and 

zero otherwise; Similarly, Hot_Month is 1 when the mean temperature is higher 

than 28oC and zero otherwise 

• A flyway index indicates whether a country is on the flyway of wild birds’ 

migration with one and zero otherwise.  

• A distance index indicates the distance of each region to the Qinghai Lake in 

China and nominated the longest distance as 1 

• Variables of country characteristics include per capita gross domestic product 

(GDP), the density of chicken production and the density of total population.  

• Interactions of agro-ecological dummies with climate factors (temperature and 

precipitation) 

, 1i ty −  is the lagged dependent variable allowing the current outbreak probability to 

be altered by whether the region has incurred previous outbreaks; 

ic is the unobserved effect and is allowed to be correlated with some elements of 

itx ; 

and , 1 1| ( , ,..., , ) ~ (0,1)it i i t i ie x y y c Normal− . 

Without loss of generality, we reset observations starting at 0t = , so that 0iy  is 

the first observation on y . For 1,2,...t T= , the density function of ity as, 
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1
1 0 , 1 , 1

1
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=
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However, to estimate β and ρ consistently, we need to address the initial 

conditions problem by making an additional assumption of ic , that is, how to treat the 

initial observations, 0iy . Wooldridge (2002; 2005) indicate that under the assumption 

of 2
0 0 1 0| ( , ) ~ ( , )i i i i i ac y x Normal y xζ ζ ζ σ+ + , we can specify the density in such a way 

that can be estimated using the standard random effects Probit estimation,  

0 1 0i i i ic y x aζ ζ ζ= + + +  

where 2
0| ( , ) ~ (0, )i i i aa y x Normal σ  and is assumed not to depend on itx . To avoid 

too many dimensions in estimationii, we use ix  to replace of ix  (Chamberlain 1980), 

which is the average of itx  for 1,2,...t T= . Also to identify time dummies, which do not 

vary across i  , they must be omitted from ix  by setting 0=ζ .  In turn then the dynamic 

unobserved effects Probit model arises,   

2 1/ 2
0 , 1 1 0

0 , 1 1 0

( 1| ) [( ) (1 ) ]

[( )
it it it i t i i a

a it a a i t a i i a

P y x x y y x

x y y x

ζ β ρ ζ ζ σ
ζ β ρ ζ ζ

−
−

−

= = Φ + + + + ⋅ +
= Φ + + + +

   for  1,2,...t T=  

where the a subscript means that a parameter vector has been multiplied by 

2 1/2(1 )aσ −+ .  In turn, this will be used to estimate the HPAI outbreak model. 

Data 

The statistical analysis will be carried out over monthly outbreak incidence data 

across 90 regions in 16 countries that are distributed in Asia, Africa, Europe and North 

America from January 2004 to December 2008. Involved countries are Malaysia, South 
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Korea, Cambodia, Indonesia, Thailand, Japan, Vietnam, China, Egypt, Nigeria, Germany, 

Romania, Turkey, Pakistan, Russia and the United States, among which China, Egypt, 

Nigeria, Germany, Turkey and Russia are on major affected flyways according to a 

recent FAO fact sheet (Newman et al. 2010).   

We define regions as part of a country and large countries have more regions than 

small countries. For exmample, there are 18 regions in China and 9 regions in the United 

States. Table 1 lists mean temperature,  precipitation and total AI outbreaks in each 

region and in the corresponding country. We could see that China, South Korea, Japan 

and the United States have less AI outbreaks compared to other countries in past five 

years.   

The outbreak incidence data were drawn from the World Animal Health 

Information Database (WAHID) Interface for 2005-2008 with 2004 data drawn from the 

Animal Health Database HANDISTATUS II. The data on total number of confirmed 

HPAI human deaths by country were drawn from the World Health Organization (WHO) 

for the time period from January, 2004 to December, 2008. The AI outbreak incidence is 

a dummy variable where a one indicates whether a region had at least one HPAI outbreak 

in a given month and zero otherwise;  

Climate data, including mean temperature and total precipitation, were collected 

from the National Environmental Satellite, Data and Information Service (NESDIS) from 

January 2004 to December 2008. Mean monthly temperature was computed in degree 

Celsius, and the total precipitation including rain and/or melted snow was computed in 

millimeter.  
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Data on country characteristics are also used. We include per capita gross 

domestic product (GDP), the density of chicken meat production and the density of total 

population in each county by each year. We obained these data for each country from the 

World Bank, the Food and Agriculture Organization of the United Nations, the United 

Nations Statistics Division and the USDA Economic Research Service (ERS), 

respectively.  

Agro-ecological conditions with be controlled for with countries grouped into five 

niches following Hogerwerf et al. (2010). These niches are defined based on  

• the level of chicken productivity and  

• purchasing power per capita and  

• the density of duck and chicken  population 

Table 2 shows the agro-ecological characteristics of each niche and their 

corresponding countries/regions falling into each. As we want to see how climate 

conditions could affect AI outbreaks in a specific agro-ecological zones.  

According to Newman et al. (2010), China, Egypt, Nigeria, Germany, Turkey and 

Russia are key destinations for wild bird migration, so we define the flyway dummy 

equal to 1 for these countries and set it to zero otherwise. We also measure the 

approximate distance from Qinghai Lake in China to each region from Google Maps 

since Qinghai Lake is one of the major wild bird mortality points and there have been 

over 6,000 migratory wild birds that were found dead with AI since 2005 (Newman et al. 

2010).  
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This study focuses on HPAI outbreaks occurred from January 2004 to December 

2008, which captures a significant period of HPAI epidemic activity in Southeast and 

Central Asia, Africa and Europe. Figure 1 portrays the number of HPAI outbreaks for 

poultry from January, 2004 to December, 2008 reported to the World Organization for 

Animal Health (OIE). The data show 7984 outbreaks in poultry flocks plus that the 

confirmed HPAI number of related human illness and death cases since 2003 are 507 and 

302, respectively.   

Table 3 provides definitions on the variablesiii . Figure 2 shows the computed 

probability of outbreaks across regions based on historical data suggesting that there 

exists hetrogeneity across regions. The trend in HPAI outbreaks across regions between 

2004 and 2008 is shown in figure 1iv and 12% of the regions have had HPAI outbreaks in 

the past 5 years. 

When applying the econometric model to our data, the empirical model for 

estimation is,  
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Following Wooldridge (2002), we can consistently estimate 0 1, , ,a a a aζ β ρ ζ and 

aζ by using a random effects Probit regression and conditional Maximum likelihood 

Method (MLE). Also following Wooldridge (2002;2005), average partial effects (APE) 

can be estimated by using the average across i  of 

0 , 1 1 0
ˆ ( )aj a it a a i t a i i ax y y xβ φ ζ β ρ ζ ζ−+ + + +

) ) ) ))
for continuous variables and taking the 

difference of values at two different jtx for discrete variables, i.e. 

0 , , , , 1 1 0 0 , , , 1 1 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )i ia j it a j a j a i t a i a a j it a j a i t a i ax y y x x y y xζ β β ρ ζ ζ ζ β ρ ζ ζ− − − − − −Φ + + + + + − Φ + + + +

) )

.   

Results 

The results involve the regression coefficients, the predicted outbreak 

probabilities and economic losses associated with climate change.  

Estimation results 

The estimated coefficients and average partial effects are shown in table 4. To 

compare, we also report results from a linear probability model with fixed effects.  The 

estimated coefficient for temperature is negative and statistically significant suggesting 

that outbreak probability decreases as temperatures rises. In particular, a 1oC temperature 

rise reduces the outbreak probability by 0.22%. In terms of precipitation, we find the 

estimation results show an inverted-U shape, however, the effect of squared precipitation 

is insignificant meaning that as precipitation increases, the probability of AI outbreaks 

increases by 0.34%.  

In terms of the other parameters, we also find the outbreak risk increases in winter 

by 3% when compared with the fall season, perhaps due to the times when the migratory 
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birds are in residence. Nevertheless, these results are consistent with findings from 

Animal Health Australia (2005) and WHO (2007). 

Results also show that the density of total population and chicken production in a 

country has a statistically and significantly positive effect on the AI outbreak probability 

and the risk of AI outbreak is lower in countries with higher GDP level. As found by 

Hogerwerf et al. (2010), the probability of AI outbreaks is highly correlated with chicken 

production level, density of total population and the development level. There is a higher 

risk of AI outbreaks in regions/countries with a higher density level of chicken 

production as well as total population, and most of these are economically poor regions.   

We also detect the effect of past outbreaks on the chance of a current outbreak 

finding a positive significant effect.  This indicates that a region with a previous outbreak 

has an increased chance of a repeat event.  The speed at which this effect dies out is 

portrayed in figure 3 where we see that a previous AI outbreak affects subsequent 

outbreak probabilities for 5-6 months. The example of HPAI H5N1 outbreak in Hong 

Kong in 1997 and later in 2003 suggests that H5N1 was still circulating at least among 

domestic poultry during the prior year (Elvander 2006).  The dynamics of how AI 

survives is important for a country’s decision of whether to implement disease prevention 

and control strategies.  

Since it is difficult to distill out the effects of particular variables given the 

presence of interaction terms, we calculate the average partial effects of each individual 

item and plot them across niches following Ai and Norton (2003) and Norton, Wang and 

Ai (2004). Figure 4 shows the average partial effects of temperature and precipitation on 
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AI outbreaks across niches, respectively, and only reports those that are significant at 

10% confidence level.  

These results show that the average partial effect of precipitation in niche 5 is 

negative, meaning that a niche with the lowest density of chickens and duck population is 

less likely to have an outbreak. In the niches, excepting niche 3, the effects of 

temperature on AI outbreaks are insignificant. A lower risk of AI outbreaks is related to a 

higher level of per capita income level. These results are also found in our estimation 

results.  

For most significant variables, the linear probability model with fixed effects 

gives similar results, however, it is poor in fitting our data because the residual standard 

error is much smaller than that from the Probit model with random effects, therefore, we 

will use results from the Probit model in the following studies.   

Calculated Outbreak Probabilities 

Using results from the Probit regression model, we predict the probability of AI 

outbreaks in each country which is shown in the second column of table 5. These 

predicted probabilities based on current climate conditions are consistent with our 

observed probabilities, for example, Egypt, Indonesia, Thailand, Vietnam, Cambodia 

have a higher risk of AI outbreaks. In contrast, Japan, South Korea and the United States 

have a lower probability to have AI outbreaks under current climate condition. However, 

whether these probabilities would alter under past or future climate change is unknown. 

Given climate change, countries facing significant changes of temperature and/or 

precipitation probably encounter a higher risk of AI outbreaks. If this is the case, they 
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could make disease prevention and control plans ahead to minimize disease outbreak 

costs.  In this sense, a national evaluation would be more attractive.  

 Effects of Climate Change and Associated Economic Loss 

Using the estimation results from the Porbit regression model, we now look at 

climate change effects.  In this case, we will examine 

• How much has the realized climate change of the last 20 years contributed to 

today’s outbreaks? 

• How much will projected climate change of the future 2 decades contribute to the 

likelihood of future outbreaks? 

• What would be the additional economic losses due to past and future climate 

change? 

Past climate change contributions to current outbreaks 

Based on historical records, the IPCC estimates that the global average 

temperature has increased by 0.55°C per decade from 1970-2006 (IPCC 2007a). Changes 

in overall precipitation amounts vary by regions, but it is likely that there has been a 

statistically significant 2 to 4% increase in the frequency of heavy and extreme 

precipitation events when averaged across the middle and high latitudes during the last 

three decades of the 20th century (Kunkel et al. 2003; Groisman et al. 2004). Since the 

probability of AI outbreaks is affected by temperature and precipitation according to our 

regression results, it seems that past climate change may enhance the severity of current 

AI outbreaks.  
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We use the observational climate data from the IPCC 2007 date back to 1971-

1980. Table 5 reports the annual averaged temperature (oC/ day) and precipitation (mm/ 

day) in each country. Compared with current mean temperature and precipitation in the 

northern hemisphere, climate in the past has a lower temperature in all countries except 

Vietnam, while countries in both lower and higher latitudes have heavier precipitation 

and countries in middle latitude have less precipitation.  

Controlling all other variables and using the new temperature and precipitation 

data derived above, we simulate the probability of AI outbreaks for past climatic 

conditions.  Table 6 shows these probabilities for each country. Other than Vietnam, 

changes of temperature and precipitation in past 20 years have increased the risk of AI 

outbreaks in all countries. Climate change has significantly increased the probability of 

AI outbreaks by 8% to 1160%.  These results suggest that climate change is one of the 

forces driving the recent increase in outbreaks observed.  

If AI disease occurs in more than one region, the situation would be more serious. 

We plot the AI outbreak distribution across all 90 regions in figure 5. The results show 

the mean probability of AI outbreaks in all regions would be 0.077 under past climate 

conditions and 0.116 under current climate, indicating that past climate change has 

increased the overall mean probability of AI outbreaks by 51%.  

Projected climate change contributions to future outbreaks 

For our future projections, we select three climate models according to IPCC 

(2007a), including  
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• The Hadley Center Coupled Model (Had-CM3), which is a stable global mean 

climate (Collins et al. 2001) and is a mid-sensitivity case (Schlenker et al. 2006).   

• The coupled atmosphere-ocean Climate Model of the Centre National de 

Researches Meteorologiques (CNRM-CM3), which achieves a reasonable 

simulation of present-day climate and simulates a general increase in precipitation 

throughout the twenty first century (Douville et al. 2002).    

• The coupled climate model runs at the Geophysical Fluid Dynamic Laboratory 

(GFDL-CM2), which is a model with strikingly lower drifts in hydrographic 

fields such as temperature and salinity and more realistic currents that are closer 

to their observed values (Gnanadesikan et al. 2006).  

Since the simulated warming over a short time period (i.e. by 2030) is not very 

sensitive to the choice of scenarios across the IPCC Special Report on Emission 

Scenarios (SRES) set (IPCC 2007a), we choose the projected changes of temperature and 

precipitation under the A1B emission scenario, because it is the medium scenario with 

respect to the prescribed concentrations and the resulting radiative forcing, relative to the 

SRES range (Nakicenovic et al. 2000; IPCC 2007a).  

Through the IPCC Data Distribution Center (DDC), we obtained the projected 

changes of temperature and precipitation between 2011 and 2030v for each climate model 

as summarized in Columns 2 to 6 in table 5. Consistent with past observational data, 

nearly all models project increased temperature and heavier precipitation in middle 

latitudes, while higher temperature and less precipitation in lower and higher latitudes. In 
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turn, the last three columns of table 6 show the probability changes of AI outbreaks under 

future climate change.  

For most countries, future climate change is found to increase the risk of AI 

outbreaks. China, Malaysia and the United States have a higher probability of disease 

outbreaks under future climate change. This occurs partly because these countries 

produce a high proportion of poultry meat or products and would be easily impacted by 

AI outbreaks. However, whether these countries are vulnerable to animal disease depends 

on their adaptation capability. In other words, a country with a higher development level 

may be less affected since they have more capital and advanced technology to combat 

with disease outbreaks.  

Nevertheless, on average, the risk of AI outbreaks increases as future temperature 

and precipitation changes. Specifically, the probability of AI outbreaks across all regions 

under future temperature and precipitation condition is 0.121, 0.120 and 0.119 under 

three climate models and it will increase by 3% - 4% under future climate change.  

 Associated economic loss due to climate change 

Since different countries have different contributions of poultry production to 

their total Gross Domestic Product (GDP), we calculated the additional economic loss by 

applying the changes of the outbreak probability under climate change to the countries 

we studied. Before reporting results, we assume,  

• When an outbreak occurs that 12% of the domestic birds in each region die from 

the AI disease or are killed to prevent its spread (following assumptions in the 
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World Bank report by Burns et al. 2008). We use this percent to calculate the 

GDP reduction of a further AI outbreak due to climate change  

• We calculate the percentage of poultry production to the total GDP in each 

country in 2008 ( ipercent) and assume these percentages keep constant in each 

country over years.  

• The real projected GDP values from the World Bank in 2008 and in 2030 can be 

offset by the poultry loss percent times the GDP share of poultry. 

To evaluate the economic loss, we first calculate quantities of interest. For each 

countryi , we assume 1ip  is the difference between past and current probability of AI 

outbreaks and 2ijp  is the difference between the current and future probability with 

1,2,3j =  indicating each climate model.   

For the additional economic loss due to past climate change, we have,  

2008 1 12%pasti i i iLoss GDP p percent= ⋅ ⋅ ⋅  for 1,...,16i =  

We have similar equations for economic loss due to future climate change,  

2030 2 12%futurei i ij iLoss GDP p percent= ⋅ ⋅ ⋅   for 1,...,16i =  and 1,2,3j =  

Table 6 reports the resultant estimates of GDP loss due to past and future climate 

change. Generally speaking, additional GDP losses occur across the countries and past 

climate change generally causes a larger economic loss because of a lower probability 

under future climate change. Developed countries, such as South Korea and Japan, had 

smaller losses relative to their total GDP. On the other hand, some developing countries 

in Asia with a small economy, such as Indonesia, Thailand, and Cambodia were exposed 
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to a high proportion of losses. Additionally, many countries in our sample have reported 

more than one AI outbreaks since 2003, so the expected economic loss due to past 

climate change could be larger because of a higher frequency of outbreaks. 

The United States is the world's largest producer and second largest exporter of 

poultry meat with totals over 43 billion pounds annually and the total farm value of US 

poultry production exceeds $20 billion. Therefore, any further outbreak of HPAI in 

United States or other countries could hurt the benefits of poultry industry in the United 

States. Our estimation suggest that past climate change in the United States costs 

additional $29 million and the additional economic losses will reach $12-$18 million 

because of future climate change. 

In past five years, only Texas had one AI H5N2 case of poultry in 2004 and other 

states were free of AI, so we evaluate the expected economic loss of Texas separately. 

The estimated economic loss of Texas is about $2.7 million because of past climate 

change. Egbendewe-Mondzozo et al. (2009) estimate that the economic losses of H5N2 

outbreak in three districts in Texas without vaccination, demand shocks and trade ban are 

$121 million. Our result indicates about 2.2% of the economic loss in Texas were due to 

past climate change. 

Since China has several AI outbreaks in past few years, it would be interesting to 

partition out the economic losses caused by climate change. Table 7 shows that the 

additional economic losses in China due to past climate change are about $107 million, 

while costs fall in a range of $105-$146 million because of future climate change.  
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In addition to a national level analysis, we also compute GDP losses by region. 

Figure 6 shows that total economic losses due to past climate change are larger than that 

caused by future climate change if less than 15 regions have AI outbreaks at the same 

time, while future climate change causes more economic loss if more than 15 regions 

have AI outbreaks.   

As shown in figure 5, the probability of more than 20 regions having AI outbreaks 

at the same time is very low and most countries in this study have at least one region but 

no more than 18 regions, so the additional losses in a country are highly related to how 

many regions are affected by AI disease and it is more important for countries with more 

regions to implement disease prevention and surveillance plans as well as climate change 

adaptation strategies to minimize total economic loss of a future outbreak of AI under 

climate change.  

 Concluding Remarks 

We examined the relationship between climate conditions and the spread of AI 

and evaluated the effects of past and projected climate change on the probability of AI 

outbreaks. The estimation results show climate plays an important role in the spread of 

AI outbreaks. The risk of AI outbreaks will decrease as temperature rises, however, it 

will increase because of heavier precipitation. Therefore, the overall effects of 

temperature and precipitation on AI outbreaks are depending on climate conditions in 

each region as well as in each country.  

Under the same climate condition, regional characteristics also contribute to the 

spread of outbreaks. Regions with higher density of duck and chicken population face a 
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higher risk of outbreaks.  Outbreak risks are lower in regions with higher levels of poultry 

productivity per operation and regional income.  

Overall, the outbreak risk is increased in areas with lower temperature and heavier 

humidity. These areas, moreover, are associated with large agriculatural and poultry 

populations, low productivity of chicken, and in most cases are economically poor 

regions. Surveillance and other control measures would be advised to emphasize such 

regions. This also indicates that warmer and wetter conditions under climate change may 

be contributing to the recent rapid spread of outbreaks and that climate change as it 

progresses may worsen the problem. 

It is evident that past climate change has enhanced economic loss from AI 

outbreaks and caused substantial costs in most countries. On the other hand, effects of 

future climate change differ across regions; some countries may even gain under future 

climate change.   
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Table  l  Total AI Outbreaks,  Mean Temperature and Precipitation in Each Region 

Country Region Total AI outbreaks 
(numbers)  

Temperature 
(oC) 

Precipitation 
(mm) 

Country Region Total AI outbreaks Temperature 
(oC) 

Precipitation 
(mm) 

1 0 13.11 39.06 46 80 21.55 108.89 
2 1 17.60 94.12 47 189 25.87 173.59 
3 4 7.19 29.97 

 

48 1135 27.59 190.16 
4 6 8.76 63.45 49 22 24.67 26.13 
5 1 6.78 50.68 50 3 25.01 51.63 
6 0 5.81 43.44 51 23 26.95 25.31 
7 1 16.54 85.34 

Pakistan 
 

52 26 21.83 99.57 
8 7 16.59 80.54 53 3 11.58 121.84 
9 0 20.63 127.48 54 3 14.53 20.80 
10 4 18.73 126.27 55 2 12.98 114.95 
11 0 14.89 77.27 56 1 14.68 107.15 
12 13 17.82 100.43 

South 
Korea 
 

57 1 14.72 88.13 
13 6 18.41 117.23 58 2 12.19 128.92 
14 12 24.12 158.64 59 5 17.60 167.79 
15 2 21.74 97.69 60 4 16.25 112.83 
16 6 14.58 93.99 61 1 16.73 82.33 
17 1 18.28 90.72 

Japan 
 

62 2 9.39 87.46 

China 

18 5 14.01 45.20 Malaysia 63 15 27.68 244.67 
19 209 20.83 127.38 Cambodia 64 24 28.56 18.38 
20 120 22.26 0.25 Germany 65 493 11.00 0.00 
21 489 22.50 1.83 66 39 9.31 60.40 
22 415 21.56 0.00 67 27 10.55 47.25 
23 18 25.52 0.12 68 39 11.89 44.26 
24 10 27.04 0.15 

Romania 
 

69 5 11.35 53.45 

Egypt 

25 4 22.82 0.05 Russia 70 125 3.92 0.00 
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26 21 27.62 26.88 71 89 12.16 1.95 
27 112 27.24 10.40 72 1 12.20 4.03 
28 71 27.61 56.06 73 16 6.53 0.00 

Nigeria 
 

29 92 28.01 2.57 

 

74 3 12.00 0.00 
30 571 27.22 140.22 75 9 18.30 39.29 
31 36 27.17 155.68 76 83 10.19 38.85 
32 58 28.05 94.21 77 18 11.32 27.23 
33 1360 26.89 127.47 78 43 13.23 32.25 
34 20 26.54 193.00 79 16 14.35 35.70 
35 74 27.05 69.82 80 3 18.38 42.93 

Indonesia 
 

36 9 26.54 193.00 

Turkey 
 

81 53 15.91 34.81 
37 299 29.09 138.05 82 0 8.42 102.58 
38 38 27.13 136.46 83 0 7.11 69.25 
39 54 25.77 110.42 84 0 12.49 95.30 
40 70 27.37 121.21 85 0 17.43 102.75 
41 227 27.79 122.28 86 0 7.04 37.68 

Thailand 
 

42 17 27.80 123.61 87 1 17.24 78.94 
43 531 23.75 137.44 88 0 11.79 30.26 
44 122 23.88 126.82 89 0 8.68 56.00 

Vietnam 
 

45 265 23.84 145.49 

United 
States 

90 0 13.38 33.24 

 

 

 

 



 32 

 

Table 2 Agro-ecological Characteristics of  Niches 

 CPP(a) PPPC(b) DAP(c) Regions/Countries 
Niche 1 2 2 4 Thailand, Vietnam, Malaysia, Shaanxi, Sichuan, 

Liaoning, Jilin, Jiangxi,  Guangxi, Guizot, 
Shandong, Anhui, Heilongjiang Hubei  

Niche 2 1 1 3 Russia, Indonesia, Pakistan, Inner Mongolia 
Niche 3 3 4 3 Cambodia, Nigeria, Turkey, Romania 
Niche 4 4 4.5 5 Egypt, Guangdong, Shanghai, Beijing, Hunan, 

Jiangsu, Fujian 
Niche 5 5 5 1 Japan, South Korea, Germany, US 
Note: (a) CPP indicates the level of chicken production productivity;  

          (b) PPPC indicates the level of purchasing power per capita; 

          (c) DAP indicates the density of duck and chicken populations;  

           A number from 1 to 5 indicates the level or density of this measure in this country with 1 

being the lowest and 5 the highest.  
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Table 3 Definitions of Variables 

Variable Definition 
AIOtbkProb Outbreak incidence in a country and month equaling 1 if outbreaks 

occured,0 otherwise 
Temp Mean temperature (oC)  
Precip Total precipitation in mm 
Precip _sq Squared total precipitation 
Spring (season1) Dummy variable for whether this is a spring month in March-May 
Summer(season2) Dummy variable for whether this is a summer month in June-August 
Winter(season3) Dummy variable for whether this is a winter month in December-

February 
Niche1*temp Interaction of Niche 1 dummy and temperature 
Niche3*temp Interaction of Niche 3 dummy and temperature 
Niche4*temp Interaction of Niche 4 dummy and temperature 
Niche5*temp Interaction of Niche 5 dummy and temperature 
Niche1*precip Interaction of Niche 1 dummy and precipitation 
Niche3*precip Interaction of Niche 3 dummy and precipitation 
Niche4*precip Interaction of Niche 4 dummy and precipitation 
Niche5*precip Interaction of Niche 5 dummy and precipitation 
Cold_Month (index1) Dummy variable for whether this month average temperature is <= 4oC 
Hot_Month (index2) Dummy variable for whether the month average temperature is >= 28oC 
Flyway(index3) Dummy variable for whether on the flyway  
Distance(index4) Distance from each region to Qinghai Lake in China 
Log(ckden) Logged chicken density 
Log(ppden) Logged total population density  
Log(gdpden) Logged per capita GDP 
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Table 4 Regression Results from the Probit Model and Linear Probability Model 

 Probit Model  
with Random Effects 

Linear Probability Model  
with Fixed Effects 

Variables Coefficient APE Coefficient 
AIOtbkProbi,t-1 1.4257*** 0.3233*** 0.4063*** 
 (0.0682) (0.0262) (0.0296) 
Spring (season1) 0.1020 0.0116 0.0093 
 (0.0834) (0.0098) (0.0104) 
Summer (season2) 0.0589 0.0066 0.0052 
 (0.0926) (0.0106) (0.0101) 
Winter (season3) 0.2436*** 0.0294*** 0.0391*** 
 (0.0944) (0.0127) (0.0118) 
Temp -0.0202* -0.0022* -0.0018 
 (0.0115) (0.0013) (0.0012) 
Precip 0.0308* 0.0034* 0.0064** 
 (0.0184) (0.0020) (0.0025) 
Precip_sq -0.0007 -0.0001 -0.0001*** 
 (0.0004) (0.0001) (0.0000) 
Cold_Month (index1) -0.2538 -0.0236 -0.0230 
 (0.1687) (0.0133) (0.0146) 
Hot_Month (index2) 0.0304 0.0034 -0.0086 
 (0.0948) (0.0107) (0.0142) 
Flyway (index3) 0.0307 0.0034  
 (0.1571) (0.0172)  
Distance (index4) 0.0771 0.0084  
 (0.3938) (0.0429)  
Log(ckden) 0.7672* 0.0835* 0.1349** 
 (0.4565) (0.0500) (0.0604) 
Log(ppden) 8.4990*** 0.9254*** 1.4132*** 
 (2.4085) (0.2667) (0.4290) 
Log(gdpden) -1.1596** -0.1263** -0.1457** 
 (0.5873) (0.0641) (0.0562) 
Niche1*Precip -0.0119 -0.0013 -0.0042 
 (0.0183) (0.0020) (0.0029) 
Niche3*Precip -0.0380 -0.0041 -0.0097** 
 (0.0424) (0.0046) (0.0045) 
Niche4*Precip 0.0263 0.0029 0.0026 
 (0.0262) (0.0029) (0.0026) 
Niche5*Precip -0.1348** -0.0147** -0.0059*** 
 (0.0676) (0.0072) (0.0023) 
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Niche1*Temp 0.0033 0.0004 0.0012 
 (0.0133) (0.0015) (0.0011) 
Niche3*Temp -0.0292* -0.0032* -0.0009 
 (0.0161) (0.0017) (0.0015) 
Niche4*Temp -0.0026 -0.0003 -0.0007 
 (0.0152) (0.0017) (0.0017) 
Niche5*Temp 0.0104 0.0011 0.0019* 
 (0.0163) (0.0018) (0.0011) 
Constant -4.5280***  -5.3218*** 
 (1.4093)  (1.9694) 
/lnsig2u -3.0377***   
 (0.3989)   
sigma_u 0.2190***  1.3821 
 (0.0437)   
sigma_e   0.2623 
    
rho 0.0457***  0.9652 
 (0.0174)   
Residual standard error 0.0701  1.9601 
Likelihood-ratio test 
 of rho=0 

chibar2(01)=14.52  
Prob>=chibar2=0.000 

  

Asterisk (*), double asterisk (**) and triple asterisk(***) denote variables significant at 10%, 5% 

and 1% respectively; Standard errors are in parenthesis.  
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Table 5 Past and Projected Climate change 

Changes of climate in 2011-2030 (SRA1B) 
CNRM:CM3 HAD:CM3 GFDL:CM2 

past climate of 1980 current climate  Country 

TEMP 
(oC) 

PRECIP 
(mm) 

TEMP 
(oC) 

PRECIP 
(mm) 

TEMP 
(oC) 

PRECIP 
(mm) 

TEMP 
(oC) 

PRECIP 
(mm) 

TEMP 
(oC) 

PRECIP 
(mm) 

China 1.0259 0.0112 1.2820 0.0403 1.0726 0.0079 7.80 41.62 7.80 41.62 
Egypt 1.3496 -0.0020 1.2740 0.0092 0.8690 -0.0053 22.31 4.07 22.31 4.07 
Nigeria 1.3515 0.1539 1.0374 0.0487 1.0641 0.0429 26.67 63.45 26.67 63.45 
Indonesia 0.8388 -0.0434 0.2384 0.7130 0.7849 -0.0627 25.67 227.84 25.67 227.84 
Thailand 0.9248 0.0064 0.9262 -0.3882 0.7516 -0.1581 25.85 154.69 25.85 154.69 
Vietnam 0.8800 -0.0585 1.0006 -0.1349 0.6944 -0.1303 24.62 149.91 24.62 149.91 
Pakistan 1.3024 -0.0342 1.0755 0.0381 1.1433 -0.0375 19.47 20.47 19.47 20.47 
South Korea 1.0133 -0.0727 1.1600 0.1401 0.5000 -0.0221 11.28 112.76 11.28 112.76 
Japan 1.0795 -0.0548 1.2656 0.1310 0.6532 -0.0620 8.11 102.09 8.11 102.09 
Malaysia 0.8514 -0.1701 0.7173 -0.2254 0.8270 0.1147 25.56 238.30 25.56 238.30 
Cambodia 0.9567 0.0227 0.9967 -0.1873 0.7613 -0.0861 26.84 153.14 26.84 153.14 
Germany 0.8022 0.0790 1.0361 0.0571 1.3289 -0.0460 8.61 56.69 8.61 56.69 
Romania 1.0753 0.0857 1.7208 0.0021 1.0407 -0.1165 9.33 55.27 9.33 55.27 
Russian 1.1036 0.0243 1.5434 0.0631 1.4028 0.0365 -1.94 44.97 -1.94 44.97 
Turkey 1.1263 -0.0178 1.3878 -0.0508 0.7331 -0.0172 11.20 48.32 11.20 48.32 
United States 0.8501 -0.0060 1.1002 0.0214 1.1455 0.0184 4.27 55.35 4.27 55.35 
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Table 6 Predicted Probability under Past and Projected Climate Change 

Predicted probabilities under climate change Changes of probability (%) under climate change country 
current past Projected 

(CNRM) 
Projected 

(HAD) 
Projected 
(GFDL) 

past Projected 
(CNRM) 

Projected 
(HAD) 

Projected 
(GFDL) 

China 0.0506 0.0126 0.0572 0.0598 0.0576 300 13 18 14 
Egypt 0.2245 0.1883 0.2296 0.2278 0.2190 19 2 1 -2 

Nigeria 0.2337 0.1654 0.2362 0.2306 0.2312 41 1 -1 -1 
Indonesia 0.3373 0.2512 0.3376 0.3203 0.3362 34 0 -5 0 
Thailand 0.1934 0.1300 0.1963 0.1967 0.1923 49 2 2 -1 
Vietnam 0.2356 0.2191 0.2376 0.2408 0.2328 8 1 2 -1 
Pakistan 0.1556 0.0800 0.1686 0.1639 0.1653 95 8 5 6 

South Korea 0.0379 0.0103 0.0345 0.0356 0.0306 268 -9 -6 -19 
Japan 0.0217 0.0034 0.0184 0.0192 0.0166 542 -15 -12 -23 

Malaysia 0.0938 0.0695 0.1138 0.1115 0.1134 35 21 19 21 
Cambodia 0.2838 0.1056 0.2480 0.2490 0.2442 169 -13 -12 -14 
Germany 0.0493 0.0186 0.0761 0.0792 0.0834 165 54 60 69 
Romania 0.0251 0.0161 0.0255 0.0284 0.0254 56 2 13 1 
Russian 0.0523 0.0042 0.0667 0.0719 0.0702 1160 27 37 34 
Turkey 0.0483 0.0251 0.0508 0.0525 0.0482 93 5 9 0 

United States 0.0121 0.0015 0.0147 0.0158 0.0159 691 22 31 32 
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Table 7 Associated GDP Loss under Climate Change 

 

 

 

 

 

 

 

 

 
GDP values 
(in billions of 2005 dollars) 

 
Increased GDP Loss 
under climate change 
(in millions of 2005 dollars) 

 2008 2030 
% of poultry  
loss to GDP past 

Projected 
(CNRM) 

Projected 
(HAD) 

Projected 
(GFDL) 

China 3114.33 17604.85 0.0906 107.04 105.03 146.76 111.62 
Egypt 119.83 292.24 0.1237 5.37 1.84 1.20 -1.97 
Nigeria 110.84 344.17 0.1107 8.38 0.96 -1.16 -0.96 
Indonesia 355.24 1110.88 0.1428 43.69 0.48 -2.70 -1.78 
Thailand 212.18 541.60 0.1020 13.72 1.62 1.86 -0.59 
Vietnam 65.19 261.25 0.1460 1.57 0.78 1.98 -1.07 
Pakistan 136.33 328.59 0.0032 0.33 0.14 0.09 0.10 
South Korea 953.86 2108.54 0.0272 7.16 -1.97 -1.34 -4.19 
Japan 4436.61 5494.59 0.0039 3.16 -0.71 -0.54 -1.08 
Malaysia 158.79 378.65 0.1262 4.88 9.57 8.45 9.37 
Cambodia  7.14 24.15 0.1655 2.11 -1.43 -1.39 -1.58 
Germany 2985.76 4128.62 0.0055 5.05 6.08 6.77 7.73 
Romania 125.52 233.13 0.0711 0.80 0.07 0.54 0.06 
Russia 973.50 1630.26 0.0625 29.32 14.65 19.89 18.19 
Turkey 385.00 917.17 0.0962 8.62 2.15 3.71 -0.08 
United States 13228.80 22146.09 0.0208 28.99 12.38 17.11 17.90 
Texas 1223.511 1607.376 0.0206 2.66 0.89 1.23 1.29 
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Figure 1 Outbreaks of HPAI H5N1in poultry from Jan, 2004 to Dec, 2008 
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Figure 2 AI Outbreak Probabilities across Region 
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Figure 3 Average Partial Effects of Previous HPAI outbreaks on Current Outbreaks 
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Figure 5 Overall Probability changes under past and future climate change 
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Figure 6 Additional Economic Losses under Climate Change
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Appendix 

Table 8 Statistical characteristics of variables 

Variable Mean Std. Dev. Min Max 
AIOtbkProb 0.12 0.32 0 1 
AIOtbkProbt-1 0.12 0.33 0 1 
spring 0.25 0.43 0 1 
summer 0.25 0.43 0 1 
winter 0.25 0.43 0 1 
temp 18.29 10.30 -21.00 35.69 
precip 77.39 112.44 0 2383.54 
precip_sq 18629.57 121379.80 0 5681244.00 
Cold_Month (index1) 0.12 0.32 0 1 
Hot_Month (index2) 0.16 0.36 0 1 
Flyway(index3) 0.47 0.50 0 1 
Distance(index4) 0.37 0.24 0.06 1 
niche1*precip 31.12 81.67 0 1143.00 
niche3*precip 6.28 24.02 0 609.09 
niche4*precip 8.42 60.18 0 2383.54 
niche5*precip 18.35 54.54 0 915.67 
niche1*temp 5.65 10.58 -17.66 32.10 
niche3*temp 2.99 7.81 -7.10 34.33 
niche4*temp 3.06 8.01 -3.74 35.69 
niche5*temp 2.86 6.87 -11.39 29.60 
Log(ckden) -0.15 0.85 -2.70 1.29 
Log(ppden) 4.68 0.91 2.11 6.18 
Log(gdpden) 8.18 1.35 5.93 10.69 
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i
 A larger number of countries have been affected by the outbreaks of HPAI in past 5 years. A 

summary of loss evaluation is provided in the following section. 

ii
 Since we have monthly data from January, 2004 to December, 2008, ix is a 60k ⋅  matrix if itx is a 

n k⋅ matrix, which is too large compared with our sample size.   

iii
 Statistical descriptions are reported in Table 8 in the appendix. 

iv
 See Table 2 for variable definitions. 

v
 We consider that it is impossible for us to project disease outbreaks in a year that is far away from 

now, so in this paper, we project the situation of disease outbreaks in a short-time period. 

6
 According to the World Bank, the growth rate of GDP in United States from 2005 to 2030 would be 

2.31, so we project the GDP of Texas in 2030 using its GDP in 2008 and the GDP growth rate of United 

States.   


