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Analysis of Cardinal and Ordinal 
Assumptions in Conjoint Analysis 
 
R. Wes Harrison, Jeffrey Gillespie, and Deacue Fields 
 
 Of twenty-three agricultural economics conjoint analyses conducted between 1990 and 2001, 

seventeen used interval-rating scales, with estimation procedures varying widely. This study 
tests cardinality assumptions in conjoint analysis when interval-rating scales are used, and 
tests whether the ordered probit or two-limit tobit model is the most valid. Results indicate that 
cardinality assumptions are invalid, but estimates of the underlying utility scale for the two 
models do not differ. Thus, while the ordered probit model is theoretically more appealing, the 
two-limit tobit model may be more useful in practice, especially in cases with limited degrees 
of freedom, such as with individual-level conjoint models. 
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Numerous applications of conjoint analysis (CA) 
have emerged in the agricultural economics litera-
ture in recent years. Most of these studies have 
analyzed consumer preferences for new food 
products or resource usage and willingness to pay 
for recreational services. Studies evaluating new 
food products include Gineo (1990), Prentice and 
Benell (1992), Halbrendt, Wirth, and Vaughn 
(1991), Halbrendt, Bacon, and Pesek (1992), Yoo 
and Ohta (1995), Hobbs (1996), Sylvia and 
Larkin (1995), Sy et al. (1997), Harrison, Ozayan, 
and Meyers (1998), Gillespie et al. (1998), and 
Holland and Wessells (1998). New product ac-
ceptance studies typically assume that a respon-
dent’s total utility for a hypothetical product is a 
function of various product attributes. CA is used 
to estimate “part-worth” utilities, which measure 
the partial effect of a particular attribute level on 
the respondent’s total utility for hypothetical 
products. Part-worth estimates are typically used 
to simulate utility values for products not evalu-
ated by respondents; thus, optimal hypothetical 
products can be determined. 
 A second category of CA studies has sought to 
estimate respondents’ willingness to pay for a 
bundle of attributes associated with a recreational 

site or activity. Examples include Mackenzie 
(1990, 1993), Gan and Luzar (1993), Lin, Pay-
son, and Wertz (1996), Roe, Boyle, and Teisl 
(1996), Stevens, Barrett, and Willis (1997), Mi-
quel, Ryan, and McIntosh (2000), and Boyle et al. 
(2001). As with the new product acceptance stud-
ies, this approach requires respondents to rate or 
rank attribute bundles as price and other attribute 
levels are varied (Mackenzie 1990). Willingness 
to pay is calculated directly from the marginal 
rates of substitution between price and non-price 
attributes estimated from conjoint data. 
 Two commonly used methods for coding re-
spondent preferences are rank-order and interval-
rating scales. The rank-order method requires 
subjects to unambiguously rank all hypothetical 
product choices. In these cases, the dependent 
variable is ordinal, and ordered regression models 
such as ordered probit or logit are most suitable 
for conjoint estimation. The interval-rating 
method allows subjects to express order, indiffer-
ence, and intensity across product choices, a fea-
ture allowing both metric and nonmetric proper-
ties of utility to be elicited. Model selection be-
comes less clear if interval-rating scaling is used. 
As shown in Table 1, a wide range of models 
have been utilized when ratings have been used. 
Some studies have used linear regression to esti-
mate part-worth parameters (Halbrendt, Wirth, 
and Vaughn 1991; Prentice and Benell 1992; 
Harrison, Ozayan, and Meyers 1998; Stevens, 
Barrett, and Willis 1997; Roe, Boyle, and Teisl  
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Table 1. Summary of Agricultural Economics Literature Using Conjoint Analysis 

Year Journal Author(s) Scale 
Type of 
Study Estimation Procedure 

1990 NJARE Gineo RKa (1–9) NPAc OLS, logit 
1990 NJARE Mackenzie RTb (1–10) WTPd Rank-order logit 
1991 SJAE Halbrendt et al. RT (0–10) NPA OLS 
1992 ABIJe Halbrendt et al.  RT (0–10) NPA WLS 
1992 CJAE  Prentice and Benell RT (0–10) NPA OLS 
1993 JAAE Gan and Luzar RT (1–10) WTP Ordered logit 
1993 AJAE Mackenzie RT (1–10) WTP Ordered probit 
1993 JARE Baker and Crosbie RT (1–11) NPA OLS 
1995 IJPE Yoo and Ohta RK (1–16) NPA Multinomial logit 
1995 CJAE Sylvia and Larkin RT(-10–+10) NPA Tobit, GLS 
1996 JEM Roe et al. RT, RTs Dif f WTP Double-hurdle tobit, logit 
1996 ABIJ Lin et al. RK (1–16) WTP Order logit, two-limit tobit 
1996 ABIJ Hobbs RT (1–9) NPA OLS 
1997 ARER Stevens et al. RT, RTs Dif WTP Tobit, logit 
1997 AJAE Sy et al. RT (0–10) NPA Ordered probit 
1998 ARER Holland and Wessells RK (1–9) NPA Rank-order logit 
1998 ABIJ Gillespie et al. RT (0–10) NPA Tobit 
1998 JFS Dennis RK (0–17) NPA Ordered probit 
1998 JFS Reddy and Bush RT (0–7) WTP OLS 
1998 JAAE Harrison et al. RT (1–10) NPA OLS 
1999 JEM Stevens et al.  RT (1–10) NPA Ordered logit 
2000 JAE Miquel et al. RK WTP Random effects probit 
2001 AJAE Boyle et al. RT, RK, CHg NPA Double-hurdle tobit, ordered 

probit, rank-order logit, probit 
a RK = Ranking 
b RT = Rating 
c NA = New product acceptance study 
d WTP = Willingness-to-pay study 
e ABIJ = Agribusiness: An International Journal 
f RTs Dif = Ratings difference 
g CH = Choose one 
 

 
1996). These studies assume that interval-rating 
scales are metric and continuous. However, even 
if one argues that subjects express metric infor-
mation in their responses, interval-rating scales 
are limited by upper and lower bounds. Under 
these circumstances, linear regression models 
yield truncated residuals and asymptotically bi-
ased parameters. The censored nature of the scale 
can be accounted for with a two-limit tobit (TLT) 
model, which corrects for censoring and retains 
metric information between the bounds. Alterna-
tively, some argue that the ordered probit (OP) 
model is more suitable since interval-rating scales 
are typically measured as discrete variables and 

ordinal preferences are more appealing theoreti-
cally (Mackenzie 1990, 1993; Sy et al. 1997; Hol-
land and Wessells 1998). 
 This paper examines the cardinal versus ordinal 
assumptions in conjoint analysis when an inter-
val-rating scale is used. The paper contributes in 
two respects. First, the theoretical underpinnings 
of various measurement scales and their relation-
ships to cardinal and ordinal preferences are ex-
amined. Second, a method for analyzing the car-
dinality assumption in conjoint analysis is devel-
oped using two-limit tobit and ordered probit 
models. The analysis is applied to three separate 
conjoint data sets. 
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Literature Review 

The debate among economists as to whether car-
dinal preferences can be assumed is not new. Van 
Praag (1991) discusses the history of the cardinal-
ity-ordinality debate during the late nineteenth 
and early twentieth centuries. Cardinal utility was 
central in the development of demand theory and 
was largely unopposed throughout the nineteenth 
century (e.g., Jevons 1871, Menger 1981). The 
notion of a cardinal utility function was appealing 
because it yielded a robust theory of consumer 
demand and allowed for interpersonal compari-
sons of utility. However, by the beginning of the 
twentieth century, some economists began to doubt 
whether cardinal utility actually existed, and 
whether it could be accurately measured. This led 
to Pareto’s (1909) assertion that it was not neces-
sary to have an exact utility function to explain 
demand—that only indifference curves were 
needed. He showed that a broader class of ordi-
nal, monotonically increasing functions is suffi-
cient to derive all properties of demand. Pareto’s 
view was reinforced in the 1930s, as Robbins 
(1932) rejected the idea that cardinal utility was 
measurable at all. Other authors have given rigor-
ous explanations of the theory of consumer de-
mand in the absence of cardinal utility (e.g., 
Fisher 1918, Stigler 1950, Alchian 1953). Today, 
graduate-level microeconomics texts such as Var-
ian (1947), Silberberg (1978), and Henderson and 
Quandt (1980) discuss the highly restrictive na-
ture of cardinal preferences, and develop demand 
theory in the context of ordinal utility. 
 In spite of these developments, economists 
remain interested in cardinal utility. Three areas 
of economics that assume some form of cardinal 
utility include (i) those estimating utility func-
tions in an expected utility framework, in the 
spirit of von Neumann and Morgenstern (1947),1 
(ii) studies using conjoint and other multi-
attribute utility procedures to elicit strength of 
preferences, and (iii) studies on income equality 
and poverty in which interpersonal comparisons 
of utility are based.2 In each of these areas, it is 

assumed that, while cardinal preferences are dif-
ficult to measure with great precision, cardinal 
utility functions provide answers to “real world” 
questions. 

1 Expected utility theory relaxes the assumption of pure ordinality. 
Additional axioms are introduced to allow for an expected utility 
function that is unique up to an affine transformation. 

2 We should note that cardinal information does not solve all the 
problems associated with interpersonal comparison of utility. Even if 
an individual’s interval scale contains cardinal information, the mean-
ing of the scale values may differ from one individual to another. 

 Several studies have analyzed the effects of 
treating an interval-rating scale as a cardinal 
measure of consumer preference (Mackenzie 
1993; Roe, Boyle, and Teisl 1996; Stevens, Bar-
rett, and Willis 1997). These studies compare 
parameter estimates and predictability of TLT 
with OP models, and have produced mixed re-
sults. Mackenzie (1993) found evidence that rat-
ing scales capture intensity (cardinality) in re-
spondent preferences. The other two studies 
found empirical evidence suggesting the superior-
ity of ordered probability models as frameworks 
for analysis and suggested that assuming ordinal 
preferences is theoretically more appealing. Boyle 
et al. (2001) examined cardinality by analyzing 
both rating and ranking scales for independent 
sub-samples of respondents. They found that TLT 
and OP models resulted in the same attributes 
being significant with the same signs. They con-
cluded that assumptions regarding ordinal/car-
dinal preferences were irrelevant for their sample. 
They did not, however, test the cardinality assump-
tion or examine how well the models predicted 
preference ordering. 
 More recently, Harrison, Stringer, and Priny-
awiwatkul (2002) found little difference between 
the TLT and OP models with respect to part-
worth estimates and predictive validity. The 
signs, relative magnitudes, and statistical signifi-
cance of all part-worth estimates were consistent 
across the two models. They found no statistical 
differences between individual-level Spearman 
rank correlation coefficients between predicted 
and observed values for the two models. Swal-
low, Opaluch, and Weaver (2001) examined the 
statistical implications of utilizing strength-of-
preference information in contingent valuation. 
They found that an ordered response model in-
corporating “quasi-cardinal” information pro-
vided substantial efficiency gains relative to a 
binary response model that assumes a purely or-
dinal scale. These studies examine various de-
grees of cardinality by conducting comparisons of 
alternative models. The present study differs from 
previous literature by developing formal proce-
dures for determining whether interval-rating 
scales contain cardinal information. 
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Theoretical Considerations in 
Measuring Utility 

What conditions are required for cardinal utility? 
Torgerson (1958, pp. 15–21) describes several 
types of commonly used measurement scales. The 
first is a purely ordinal scale, which has no natu-
ral origin and whose intervals between scale val-
ues carry no meaning. This is equivalent to an 
individual selecting the most preferred attribute or 
product bundle from a set of bundles, then, once 
the most preferred bundle is removed, the re-
spondent selecting the second-best bundle from 
the remaining bundles. The process continues 
until all bundles are ranked, which results in a 
complete ordering of the choice set. If the restric-
tion of a natural origin is added, where zero 
represents the null set, the purely ordinal scale is 
consistent with the definition of an ordinal utility 
function as defined by modern economic theory 
(Henderson and Quandt 1980, pp. 5–8). A purely 
ordinal scale implies that, given a set of numbers 
arranged to represent rank order, an increasing 
monotonic transformation of the set will preserve 
the original ordering. Another implication is that 
the rank of a particular bundle in one choice set 
cannot be compared to bundles in other choice 
sets. This follows from the assumption that dif-
ferences between scale values carry no meaning, 
which also implies that bundles are not compara-
ble across individuals. The purely ordinal scale 
can be translated into a binary choice model, 
where the most preferred bundles from a series of 
ranking-tasks represent the choice variables. 
 An extension of the purely ordinal scale is 
where differences between rankings have mean-
ing, but are still ordinal. Swallow, Opaluch, and 
Weaver (2001) refer to this as a “quasi-cardinal” 
scale, where intervals represent imprecise indica-
tors of an individual’s strength of preferences. 
Another way to think about this is that differences 
between scale values are meaningful, but they are 
not evenly spaced. Ordered logit or probit models 
can be used with this type of scaling. Swallow, 
Opaluch, and Weaver (2001) found that this type 
of strength-of-preference information improved 
the efficiency of WTP estimates, provided that 
the analyst assumes that “quasi-cardinal” infor-
mation allows for at least partial interpersonal 
comparisons of utility. 
 Another type of scale is the equal-interval scale 
without an origin, which is the closest scale to 

pure cardinality. This form of cardinality not only 
assumes that intervals between scale values have 
meaning, but that they are also equally spaced 
(Torgerson 1958). Temperature scales are exam-
ples. A set of numbers satisfying the property of 
interval scaling is sensitive to linear transforma-
tions of the form y = α + βx, where α is any posi-
tive scalar. This implies a form of cardinal scaling 
since interval distances have metric properties, 
but the origin of the scale has no meaning. As 
previously discussed, linear regression and TLT 
models may be used under these more strict as-
sumptions. 
 Lastly, the ratio scale is an interval scale with 
the additional assumption of a natural origin. The 
ratio scale has the property that a number 2x is 
twice as great as x; that is, the scale is sensitive to 
linear transformations of the form y = βx. The 
restrictive ratio scale is consistent with the con-
cept of a purely cardinal utility function (Hender-
son and Quandt 1980, pp. 5–8). 
 Whether interval-rating scales used in CA stud-
ies meet conditions of ordinality, quasi-cardinal-
ity, equal-interval cardinality, or pure cardinality 
will depend upon how preferences are elicited, 
and on whether respondents express certain prop-
erties in their valuations. For instance, suppose 
respondents are asked to rate a subset of attribute 
bundles (selected from the total population of all 
possible attribute combinations) such that “0” is 
assigned to the least preferred and “10” is assigned 
to the most preferred bundle. It is possible that at 
least one of the untested bundles is less preferred 
than the one rated A0@; likewise, an untested bun-
dle could be preferred over the one rated “10”. 
Under this type of rating task, at least ordinal 
scaling is present. However, equal-interval scal-
ing may also result if the distributional properties 
of respondent valuations correspond to the equal 
interval properties associated with the real num-
ber system. 
 On the other hand, if respondents are asked to 
assign a “0” to the worst possible bundle selected 
from the total population of attribute bundles, 
then the argument might be made that a ratio 
scale could be constructed. This is usually not the 
case, however, since few CA studies elicit re-
sponses for all possible attribute combinations. 
The distinction between ratio and equal-interval 
scaling is important, as cardinality has been criti-
cized on the basis that it must be synonymous 
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with the ratio scale. Such criticism argues that a 
response of “4” means that the respondent prefers 
the bundle twice as much as one rated a “2”. An 
implication here is that a ratio scale is the only 
scale providing enough cardinal information to 
allow for interpersonal comparisons of utility. 
However, if equal-interval scaling is present, then 
a degree of cardinal information is present, and 
this information can be used to simulate the total 
utilities for untested product bundles so as to pro-
vide a unique ordering for all products. More-
over, like Swallow, Opaluch, and Weaver’s 
(2001) quasi-cardinal scale, the equal-interval scale 
also assumes a degree of interpersonal compara-
bility. 
 It is not our intention to argue for or against the 
existence of a purely cardinal utility function. It is 
left to the researcher to determine its usefulness 
given the context of a particular study. However, 
various degrees of cardinality are possible when 
interval scaling is used, and its existence may be 
tested empirically.3 This is an important empirical 
issue since a researcher’s choice of scaling places 
restrictions on the subject’s ability to reveal his or 
her “true” preferences in CA studies. Moreover, 
the subsequent choice among econometric models 
is dependent upon these restrictions. 
 
Model Specification: Cardinal 
Versus Ordinal Assumptions 
 
Most conjoint studies assume that a consumer’s 
true utility is a linear function of selected product 
attributes. Two-limit tobit and OP models provide 
a means to estimate conjoint parameters and to 
evaluate the cardinal and ordinal properties of 
interval-rating scales. The structural equation for 
both models is specified as 
 
(1) , *i iy = + εx β
 
where yi* is a latent variable representing ith in-
dividual’s total utility for a particular combination 
of product attributes, β is a (k×1) column vector 
with the first element being the intercept β0 and 
all other elements being part-worth utility effects, 
xi is the ith (1×k) row vector representing the 

product attributes with a “1” in the first column 
for the intercept, and ε

3 Note that we do not test purely ordinal scaling in this study. We focus 
on whether the interval scaling methods used in many conjoint studies 
contain cardinal information consistent with equal-interval scaling. 

i is the error term. The la-
tent variable, y*, is assumed to be continuous and 
metric in nature. 
 A primary assumption of both models is that 
interval-rating scales provide only limited infor-
mation about a consumer’s true preferences (y*). 
Assume that an interval-rating scale from 0 to J is 
used to measure respondent preferences, where 0 
and J are assigned to the least and most preferred 
bundles, respectively. The TLT model assumes 
the following relationship between the interval-
rating scale and y*: 
 

yi = µL, if yi* ≤ µL, 
yi = y*, if µL < yi*< µU,  and 
yi = µU, if µU ≤ yi*, 

 
where µL and µU are known, and set equal to the 
lower and upper bounds of the scale (i.e., 0 and J, 
respectively), yi equals the observed value of the 
scale for the ith respondent, and y* is as previ-
ously defined. An important assumption is that a 
respondent’s true preferences are censored by 
upper and lower values of the scale. This implies 
that some respondents rating products as either 0 
or J would have assigned lower or higher values 
to untested products if allowed to do so by ex-
perimental conditions. 
 A key difference between TLT and OP models 
is the restriction each places on the measurement 
of y*. The OP model also assumes that y* is cen-
sored, but differs as follows: 
 

yi = 0, if yi* ≤ µ0, 
yi = 1, if µ0 < yi* ≤ µ1, 
yi = 2, if µ1 < yi* ≤ µ2, 
. 
. 
. 
yi = J, if  µj-1  ≤ y i*, 

  
where the µ’s are unknown “threshold” parame-
ters that determine the spacing between the J 
categories of y. In addition to differences in the 
mapping of y onto y*, the models also differ in 
regard to the error structure. The TLT model as-
sumes εi is normally distributed with zero mean 
and variance equal to σ2, where σ2 is estimated 
along with other model parameters (Long 1997). 
Ordered probit also assumes that gi is normally 
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distributed with zero mean, but sets σ2 equal to 
one. 
 It is important to note that the OP model as-
sumes only that the µ’s increase as y increases, so 
they represent only a monotonic mapping of y 
onto y*, which is consistent with the previously 
discussed ordinal scales. Moreover, it can be 
shown that the TLT model implicitly assumes 
equal-interval scaling. This allows us to use the 
spacing of the µ’s in the OP model to test the 
equal interval assumptions of the TLT model. 
Readers interested in a more technical discussion 
of linkages between the OP and TLT models with 
respect to interval spacing should contact the au-
thors. 
 
Data 
 
Three data sets were used to test for the presence 
of equal-interval scaling when interval-rating 
scales were used to elicit consumer preferences. 
All three were collected to examine con-
sumer/buyer preferences for new hypothetical 
products using interval-rating scales, which al-
lows respondents to indicate ties, as well as the 
strength of their preferences. Models are com-
pared by formally testing the equal interval as-
sumption, comparing standardized parameter es-
timates, and analyzing predicted values across 
models. 
 The first data set was collected to examine con-
sumer preferences for new food products derived 
from crawfish. The attributes and levels selected 
were three product forms consisting of crawfish 
minced-based nuggets, patties, and poppers; three 
package sizes consisting of a 12-, 24-, and 48- 
pack; three reheating methods expressed as baked, 
fried, or microwaved; and three price levels set at 
10, 20, and 50 cents per ounce. With four 3-level 
attributes, a full factorial experimental design 
would involve 81 hypothetical product combina-
tions. Subjects would have difficulty rating all 81 
product profiles, so a fractional factorial design 
was used to reduce the number of profiles to nine. 
The questionnaire containing the nine profiles 
was administered via personal interview, where 
respondents were allowed to visually inspect and 
handle all nine products. After examination, the 
respondent was asked to rate each product profile 
on a scale from 1 to 10, where 1 was the least and 
10 the most preferred. The sample was composed 

of 111 consumers who had been recruited by 
telephone in and around the city of Baton Rouge, 
Louisiana. Greater detail on the procedures is 
found in Harrison, Ozayan, and Meyers 1998). 
 The second data set was collected to examine 
retailer preferences of ostrich meat products. Four 
attributes and their levels were selected: portion 
size, including non-portioned, four-ounce, and 
six-ounce portions; product type, including 
ground, processed, and filet; whether or not the 
product was branded; and purchase price from the 
processor in dollars per pound: $4.00, $8.00, and 
$12.00. A full factorial experimental design 
would involve 54 hypothetical product combina-
tions. A fractional factorial design reduced the 
number of profiles to nine. The questionnaire was 
administered via mail to retailers in the south-
central United States. Respondents were asked to 
rate each profile from 0 to 10, where 0 was the 
least and 10 the most preferred product. Conjoint 
results were collected from 133 retail outlets. See 
Gillespie et al. (1998) for greater detail on the 
study. 
 The third data set was collected to examine 
consumer preferences of crawfish sausage prod-
ucts. Four attributes and their respective levels 
were selected: price, which included $3.00 and 
$3.50 per pound levels; package size, which in-
cluded 16- and 48-ounce sizes; cooking method, 
which included baked, pan fried, and deep fried; 
and product form, which included short, medium, 
and long sausage links. A full factorial experi-
mental design would involve 36 hypothetical 
product combinations. A fractional factorial de-
sign reduced the number of profiles to nine. The 
questionnaire was administered via personal in-
terview. Respondents were asked to rate each 
profile from 1 to 10, where 1 was the least pre-
ferred and 10 the most preferred product. Con-
joint results were collected from 144 consumers. 
See Harrison, Stringer, and Prinyawiwatkul 
(2002) for greater detail on the study. 
 
Results 
 
A Wald statistic is used to test the following null 
hypothesis: H0: (µj – µj-1) – (µk – µk-1) = 0, for all j 
and k, j … k, where (µj – µj-1) and (µk – µk-1) meas-
ure the interval distances between threshold pa-
rameters in the OP model. Rejection of H0 pro-
vides evidence that equal interval assumptions of  
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Table 2. Wald Tests of Differences in Intervals 
 µ2-µ1

a   µ3-µ2   µ4-µ3   µ5-µ4  µ6-µ5  µ7-µ6   µ8-µ7  µ9-µ8

Nugget Data Set 
µ1-0  0.082  0.103*b  0.097*  0.132**  0.064  0.019 -0.076  n/a 
µ2-µ1   0.021  0.015  0.050 -0.018 -0.063 -0.158***  n/a 
µ3-µ2   -0.006  0.029 -0.039 -0.084* -0.180***  n/a 
µ4-µ3     0.035 -0.033 -0.078* -0.174***  n/a 
µ5-µ4     -0.068 -0.113** -0.208***  n/a 
µ6-µ5      -0.045 -0.140**  n/a 
µ7-µ6       -0.095  n/a 

Ostrich Meat Data Set 
µ1-0 -0.068* -0.073** -0.034 -0.194*** -0.071**  0.036 -0.390***  0.029 
µ2-µ1  -0.005  0.034 -0.125*** -0.002  0.105*** -0.322***  0.097***

µ3-µ2    0.040 -0.120***  0.003  0.110*** -0.316***  0.102***

µ4-µ3    -0.160*** -0.037  0.070** -0.356***  0.063*

µ5-µ4      0.123***  0.230*** -0.196***  0.223***

µ6-µ5       0.107*** -0.319***  0.100***

µ7-µ6       -0.426*** -0.007 
µ8-µ7         0.419***

Sausage Data Set 
µ1-0  0.085*  0.098** -0.027  0.099**  0.073 -0.022  0.033  n/a 
µ2-µ1   0.013 -0.112**  0.014 -0.012 -0.108** -0.052  n/a 
µ3-µ2   -0.125***  0.001 -0.025 -0.120*** -0.065  n/a 
µ4-µ3     0.126***  0.100**  0.005  0.060  n/a 
µ5-µ4     -0.026 -0.121*** -0.066  n/a 
µ6-µ5      -0.095** -0.040  n/a 
µ7-µ6        0.055  n/a 

a A Wald test is used for the following null hypothesis: H0: (µj – µj-1) – (µk – µk-1) = 0, for all j and k, j … k, where (µj – µj-1) and (:k 

– :k-1) measure distances between threshold parameters in the OP model. The Wald statistic (W) is distributed as chi square and 
calculated as 

2
1 1

1 1

[( ) ( )]
Var( ) Var( 1) 2Cov(( ), ( ))

j j k k

j j k k j j k k

W − −

− −

µ −µ − µ −µ
=

µ −µ + µ −µ − − µ −µ µ −µ 1−

. 

 
b *, **, and *** indicate significance at the 0.10, 0.05, and 0.01 levels. 

 
the TLT model do not hold. The Wald statistic 
(W) is distributed as chi square and calculated as 
 

(2) 
2( )

Var( ) Var( ) 2Cov( , )
j k

j k j

W
θ − θ

=
θ + θ − θ θk

 

 
(Long 1997, p. 93), where θj = (µj – µj-1) and θk = 
(µk – µk-1). 
 The test results are presented in Table 2. For 
the crawfish nugget data set, seven of the 28 pair-
wise comparisons of intervals were significantly 
different at the 0.05 level or greater. An addi-

tional four were significantly different at the 0.10 
level. The µ8 – µ7 interval is the widest and, 
therefore, is significantly different from most of 
the other intervals. For the ostrich meat data set, 
24 of 36 combinations of intervals were signifi-
cantly different at the 0.05 level or greater. An 
additional two were significant at the 0.10 level. 
The µ8 – µ7 interval was the widest interval and, 
therefore, was significantly different from all 
other intervals at the 0.01 level of significance. 
The µ’s estimated with this data set were the most 
unevenly spaced of the three data sets. For the 
sausage data set, ten of 28 combinations were 
significantly different at the 0.05 level or greater.  
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Table 3. Two-Limit Tobit and Ordered Probit Part-Worth Estimates for the Nugget-Based 
Crawfish Products Analysis 

 
TLT and OP 

Index Function Estimates 

OP 
Threshold 
Estimates 

TLT and OP 
Standardized 
Estimates a  

Attribute βTLT βOP µ βS
TLT βS

OP βS
TLT – βS

OP

Constant 0.646 
(1.047) 

 0.146
(0.240)

 µ1   0.422
(9.396)

*** 0.193 0.130 0.063 

Average rating 1.145 
(9.522) 

***b 0.383
(7.873)

*** µ2   0.762
(14.223)

*** 0.342 0.340 -0.002 

Packaging 0.010 
(1.556) 

 0.003
(1.492)

 µ3   1.081
(18.441)

*** 0.003 0.003 -0.000 

Price -6.046 
(-10.676) 

*** -2.044
(-10.275)

*** µ4   1.405
(22.585)

*** -1.805 -1.815 0.010 

Nugget form 
 

-0.411 
(-3.023) 

*** -0.137
(-2.976)

*** µ5   1.695
(26.072)

*** -0.123 -0.121 0.001 

Patty form 0.841 
(6.214) 

*** 0.283
(5.799)

*** µ6   2.053
(30.076)

*** 0.251 0.251 -0.001 

Fried reheat -0.378 
(-2.786) 

*** -0.129
(-2.816)

*** µ7   2.456
(33.781)

*** -0.112 -0.114 0.001 

Microwave reheat 0.400 
(2.952) 

*** 0.138
(2.913)

*** µ8   2.954
(37.264)

*** 0.119 0.123 -0.003 

σ 2.974 
(38.126) 

*** 1    

Log L. ratio χ2 229.78 *** 227.37 ***      

Pseudo R2 .21  .21       

Hausman statistic c 7.17         
a  The notation βS

TLT and βS
OP refers to the standardized estimates, which are calculated using the following formula: s

kβ = βk /σy*, 
where σy* is the unconditional standard deviation of y* and is estimated by 2

*yσ = β′Var(x)β + Var(ε). 
b  *, **, and *** indicate significance at the 0.10, 0.05, and 0.01 levels. 
c  Hausman’s procedure is used to test the null hypothesis that TLT standardized estimates are inconsistent relative to OP standard-
ized estimates. The Hausman statistic is distributed as chi square and defined as follows: 
 

1
OP TLT OP TLT OP TLT( ) '[Var( ) Var( )] (S S S S S SH −= β − β β − β β −β ) . 

 
An additional one was significantly different at 
the 0.10 level. Each of these analyses showed 
significant differences in the intervals between 
the µ’s, suggesting that the equal interval assump-
tion of the TLT model does not hold for any of 
the three data sets. 

Comparison of Part-Worth Estimates 

Given that equal interval assumptions of the TLT 
model do not hold for any of the data sets, it is 
useful to determine whether part-worth estimates 
differ between the two models. The index func-
tion estimates for the TLT and OP models are 

presented in Tables 3, 4, and 5 for the crawfish 
nugget, ostrich meat, and crawfish sausage data 
sets, respectively. The index function βs represent 
the part-worth estimates utilized in all of the pre-
viously cited CA studies. For both models, the βs 
are interpreted as the change in the underlying 
utility scale given a unit change in x. Casual ob-
servation of the results suggests that estimates of 
the TLT and OP analyses are consistent in the 
sense that, in all cases, the signs are the same, and 
variables that are significant for the TLT model 
are also significant for the OP model. However, 
since parameters in the TLT and OP models are  

 



October 2005 Agricultural and Resource Economics Review 246 
 

Table 4. Two-Limit Tobit and Ordered Probit Part-Worth Estimates for the Ostrich Meat 
Products Analysis 

 
TLT and OP 

Index Function Estimates 

OP 
Threshold 
Estimates 

TLT and OP 
Standardized 
Estimates a  

Attribute                      βTLT βOP µ βS
TLT βS

OP βS
TLT – βS

OP

Constant -2.636
(-6.493) 

 ***b -0.754
(-7.088)

*** µ1   0.174
(7.318)

*** -0.514 -0.608 0.094 

Average rating 1.460 
(18.563) 

*** 0.357
(16.473)

*** µ2   0.416
(12.153)

*** 0.285 0.288 0.003 

Branded product 0.431 
(4.020) 

*** -0.102
(-4.640)

*** µ3   0.663
(16.359)

*** -0.084 -0.083 0.002 

Ground form 0.132 
(0.729) 

 0.039
(0.893)

 µ4   0.870
(19.570)

*** 0.026 0.031 -0.005 

Processed form -0.681 
(-3.735) 

*** -0.168
(-3.671)

*** µ5   1.238
(24.803)

*** -0.132 -0.135 0.003 

4-ounce portion 0.012 
(0.065) 

 0.002
(0.045)

 µ6   1.482
(27.952)

*** 0.002 0.002 0.001 

6-ounce portion 0.424 
(2.339) 

** 0.101
(2.271)

** µ7   1.619
(29.471)

*** 0.083 0.082 -0.001 

Price $12 -1.458 
(-7.932) 

*** -0.353
(-8.099)

*** µ8   2.183
(35.846)

*** -0.285 -0.284 0.000 

Price $8 -0.303 
(-1.676) 

* -0.085
(-1.851)

* µ9   2.327
(37.177)

*** -0.059 -0.608 0.009 

Σ 4.156
(35.174) 

 *** 1     

Log L. Ratio χ2 442.28 *** 449.10 ***      
Pseudo R2 .34  .35      
Hausman statistic c 4.30         

a  The notation βS
TLT and ΒS

OP refers to the standardized estimates, which are calculated using the following formula: *s
k k yβ = β , 

where σy* is the unconditional standard deviation of y* and is estimated by 2
* 'Var( ) Var( )y xσ = +β β ε

)

. 
b  *, **, and *** indicate significance at the 0.10, 0.05, and 0.01 levels. 
c  Hausman’s procedure is used to test the null hypothesis that TLT standardized estimates are inconsistent relative to OP standard-
ized estimates. The Hausman statistic is distributed as a chi square

 
and

 
defined as follows: 

1
OP TLT OP TLT OP TLT( ) '[Var( ) Var( )] (S S S S S SH −= β −β β − β β −β . 

 
 
estimated under different assumptions regarding 
the variance of σ, direct comparisons of the mag-
nitudes of βs are not meaningful. McKelvey and 
Zavoina (1975) introduce a formula to standard-
ize the coefficients for cross-model comparisons. 
The standardized βs are calculated as 

(3) 
*

s k
k

y

β
β =

σ
 

where σy* is the unconditional standard deviation 
of y* and is estimated as 

(4) 2
* Var( ) Var( )yσ + ε= β' x β , 

where Var(x) is the covariance matrix of x and 
Var(ε) = 1 in the OP model, and is estimated in 
the TLT model (Long 1997, p. 129). Standardized 
βs are interpreted as the number of standard 
deviations of change in the underlying utility 
scale given a one standard deviation change in the 
independent variable. Hausman’s procedure 
(Greene 2000, p. 383) was used to test the null 
hypothesis that TLT standardized estimates are 
jointly inconsistent relative to OP standardized  
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Table 5. Two-Limit Tobit and Ordered Probit Part-Worth Estimates for the Crawfish Sausage 
Products Analysis 

 
TLT and OP 

Index Function Estimates 

OP 
Threshold 
Estimates 

TLT and OP 
Standardized 
Estimates a  

Attribute βTLT βOP µ βS
TLT βS

OP βS
TLT – βS

OP

Constant 2.736
(2.192) 

 **b 0.813
(1.955)

* µ1  0.392
(10.282)

*** 0.714 0.654 -0.060 

Average rating 1.305 
(17.328) 

*** 0.426
(17.167)

*** µ2  0.700
(15.040)

*** 0.341 0.343 0.002 

Price -1.026
(-2.724) 

 *** -0.334
(-2.669)

*** µ3  0.994
(19.430)

*** -0.268 -0.269 -0.001 

Package size -0.035 
(-5.961) 

*** -0.011
(-5.741)

*** µ4  1.414
(25.032)

*** -0.009 -0.009 -0.000 

Link size: long 0.385 
(3.058) 

*** 0.126
(3.098)

*** µ5  1.708
(28.883)

*** 0.101 0.101 0.001 

Link size: medium 0.390 
(3.119) 

*** 0.127
(3.023)

*** µ6  2.027
(32.836)

*** 0.102 0.103 0.001 

Baked 0.955
(7.612) 

 *** 0.312
(7.806)

*** µ7  2.442
(37.868)

*** 0.249 0.252 0.002 

Deep fried 1.010 
(8.072) 

*** 0.329
(7.780)

*** µ8  2.801
(41.421)

*** 0.264 0.265 0.001 

σ 3.091
(40.927) 

 *** 1     

Log L. Ratio χ2 522.91 *** 522.84 ***      

Pseudo R2 .34  .35      

Hausman statistic c 6.13         

a  The notation βS
TLT and βS

OP refers to the standardized estimates, which are calculated using the following formula: , 
where σ

*/s
k k yβ = β σ

y* is the unconditional standard deviation of y* and is estimated by 2
* 'Var( ) Var( )y xσ = +β β ε

)

)i

. 
b  *, **, and *** indicate significance at the 0.10, 0.05, and 0.01 levels. 
c  Hausman’s procedure is used to test the null hypothesis that TLT standardized estimates are inconsistent relative to OP standard-
ized estimates. The Hausman statistic is distributed as a chi square

 
and

 
defined as follows: 

 
1

OP TLT OP TLT OP TLT( ) '[Var( ) Var( )] (S S S S S SH −= β −β β − β β −β . 
 
 
estimates. Results show that the standardized 
TLT estimates are not significantly different from 
the OP standardized estimates at the 0.10 level of 
significance (Tables 3, 4, and 5). Thus, despite 
rejection of the equal interval assumption, the two 
models do not differ significantly with respect to 
their estimates of the underlying utility scale. 
 
Analysis of Predicted Values 
 
Although the estimated TLT and OP models are 
consistent with respect to estimation of the under-
lying utility index, predicted values of the two 

models differ. Since there is no conditional mean 
for y in the OP model, the predicted value is the 
category having the highest probability of occur-
rence, given x. Consequently, the spacing of the 
µ’s has a significant effect on predicted values of 
the OP model. Predicted values are calculated as 
 
(5)   , 1

ˆ ˆ ˆ ˆ ˆ[ | ] ( ) (j j i jMax Pr y j u −= = Φ − −Φ µ −x x β x β

 
where ^ denotes the maximum likelihood 
estimates (Long 1997). (For simplification, ^ is 
dropped in the following discussion.) Since the 
conditional mean of y* (i.e., xiβ) is common  
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Figure 1. Equally Spaced Thresholds in the Two-Limit Tobit Model 
 
 
between the first and second terms in (5), the 
probability of y* falling in the jth category is 
uniquely determined by the spacing of µj and µj-1. 
Figure 1 shows how equally spaced µ’s affect the 
cell probabilities for the case where J equals 9. 
The vertical axis shows the value of the 
conditional cumulative density function (CDF) 
for y*, i.e., the probability that y* # j given x. 
The horizontal axis shows the value of y* with 
the J – 1 thresholds spaced uniformly along its 
scale. The probability that y* = j depends on the 
difference between values of the conditional CDF 
evaluated at µj and µj-1. For instance, the proba-
bility that y* falls in category 6 is given by the 
difference between points a and b in Figure 1. 
Notice that equally spaced thresholds imply that 
the CDF for y* is divided equally across the J – 1 
categories, but does not imply that cell probabil-
ities are equal across intervals. Unequally spaced 
thresholds imply that the conditional CDF is divi-
ded asymmetrically by the µj’s, and that cell prob-
abilities are skewed toward intervals with the 
largest spacing (Figure 2). 
 Since the TLT model assumes that the interval-
rating scale is continuous between its upper and 
lower limits, its predicted values differ from those 
of the OP model. The TLT predicted values are 

given by the conditional mean of y given x. The 
formula is 
 
(6) [ ] [ ] [ ]( | ) [ ] [ ]

[ ] [ ] ,
[ ] [ ]

L L U U U L

U L

U L

E y

i

= µ Φ δ + µ Φ −δ + Φ δ −Φ δ

⎡ ⎤φ δ − φ δ
+ σ⎢ ⎥Φ δ −Φ δ⎣ ⎦

x

x β

 

 
where ( )L L i /δ = µ − σx β  and ,  
and all other variables are as previously defined 
(Long 1997, p. 213). Note that OP predicted val-
ues correspond to one of the J discrete values, 
while TLT predicted values may take non-integer 
values. This complicates comparison of predicted 
values for the two models. 

( )U U iδ = µ − σx β /

 Several studies have used individual Spearman 
rank correlation (SRC) coefficients to examine 
the correlation between actual and predicted val-
ues (Harrison, Stringer, and Prinyawiwatkul 
2002; Roe, Boyle, and Teisl 1996). SRC coeffi-
cients and Wilcoxon signed rank (WSR) tests are 
used to examine the in-sample correlation be-
tween actual and predicted values for each re-
spondent. The SRC is used because the OP model 
provides ordinal predicted values. The SRC coef-
ficient, corrected for tied data, may be found in 
Zar (1984, p. 320). Once the SRC for each model  
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Figure 2. Unequally Spaced Thresholds in the Ordered Probit Model 
 
 
and individual in the sample is calculated, the 
WSR statistic is used to test the null hypothesis 
that the SRC coefficients differ between TLT and 
OP models. The WSR test calculates absolute 
differences between each respondent’s TLT and 
OP SRC coefficients, ranks the absolute values 
across the entire sample, assigns the sign of the 
original difference to the rank, and then sums the 
ranks (Roe, Boyle, and Teisl 1996). 
 Results of the SRC analysis suggest that, for all 
three data sets, the rank order of the TLT results 
is more highly correlated with the actual ranking 
than the OP results (Table 6). The SRC coeffi-
cients were greater for the TLT relative to the OP 
results in 64 percent, 73 percent, and 55 percent 
of the cases for the crawfish nugget, ostrich meat, 
and crawfish sausage data sets, respectively. This 
is not surprising given the distribution of the pre-
dicted values for both TLT and OP analyses. Or-
dered probit predicted values tend to cluster 
among a limited number of predicted values. For 
the crawfish nugget, ostrich meat, and crawfish 
sausage data sets, only five, three, and four values 
were predicted, respectively. These ratings gener-
ally fell within the widest intervals of the µ’s. For 
example, the ostrich meat OP model yielded pre-
dicted values of 0, 8, and 10, with a frequency 
distribution of 51.1, 25.8, and 23.3 percent of the 
total sample, respectively. In contrast, TLT pre-

dicted ratings calculated using equation (6) are 
real numbers in the interval [0, 10]. In calculating 
SRC, the squared difference between the actual 
and the predicted values is expected to be higher 
for the OP results than for the TLT, since there 
are few numbers that OP predicted values will 
take, resulting in a lower SRC for the OP model. 
The SRC coefficient penalizes OP results because 
of the discrete nature in which its predicted val-
ues are estimated. Note the large number of cases 
in which SRC was greater for the TLT model in 
the ostrich meat data set (Table 6). Given that 
there were only three predicted values in that data 
set using OP (0, 8, and 10), the result is not sur-
prising. 
 Given the tendency for the SRC coefficient to 
favor TLT results, a second rank-order correla-
tion coefficient, gamma (γ), was estimated (see 
Blalock 1979, pp. 416–426). This statistic tests 
whether pairs are concordant or discordant. Pair-
ings are concordant if the estimated ranking in-
creases along with the actual ranking. Discor-
dance occurs in the opposite case. Ties are 
counted as neither concordant nor discordant. 
Contrary to results of the SRC coefficients, the γ 
coefficients were greater for the OP results for all 
three data sets, and significantly different in the 
crawfish nugget and sausage data sets. Ordered 
probit results had greater associated γ’s in 63, 56,  
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Table 6. Results of the Spearman and Gamma Analyses 

 Median Value Number of Cases Wilcoxon Signed Rank Test b

 
Ordered 
Probit 

Two-Limit 
Tobit TLT > OP OP > TLT Z-Value Probability 

Crawfish nugget 0.35 0.38 71 40 -2.857*** c 0.004 
Spearman rs a       

Crawfish nugget 0.31 0.28 40 69 3.326*** 0.001 
Gamma γ       

Ostrich meat 0.32 0.43 74 28 -4.996*** 0.000 
Spearman rs       

Ostrich meat 0.43 0.39 43 54 0.810 0.418 
Gamma γ       

Sausage 0.58 0.62 76 61 -2.190** 0.028 
Spearman rs       

Sausage 0.67 0.52 40 94 4.584*** 0.000 
Gamma γ       

a  Spearman rank correlation and gamma coefficients are calculated between actual and predicted rankings for each respondent in 
the sample. 
b  The Wilcoxon signed rank test tests the null hypothesis that differences between Spearman rank and gamma values for TLT and 
OP models are equal to zero. 
c  *, **, and *** indicate significance at the 0.10, 0.05, and 0.01 levels. 
 
 
and 70 percent of the cases for the crawfish nug-
get, ostrich meat, and crawfish sausage data sets, 
respectively. This suggests greater concordance 
with the OP rankings than with the TLT rankings. 
Unfortunately, dependence on γ for determination 
of rank-order correlation has problems as well. 
Consider a hypothetical case where the actual 
ranking for a set of 10 profiles is 1, 2, 3, 4, 5, 6, 
7, 8, 9, and 10, compared to TLT model predicted 
values of 1, 2, 3, 4, 5, 6, 7.51, 7.49, 9, and 10, 
and OP model predicted values of 1, 1, 1, 1, 1, 1, 
1, 5, 5, and 10. In this case, γ = 0.96 for TLT pre-
dicted values and 1 for OP predicted values. 
Though TLT values are more closely aligned with 
the actual results, they are not in complete con-
cordance. While OP predicted values generally 
differ greatly from actual values, they are in con-
cordance. These results suggest that neither SRC 
nor γ coefficients are entirely suitable for com-
parison of predicted values across the TLT and 
OP models. Moreover, Kendall’s J coefficient 
suffers from similar problems as the estimation is 
also based upon concordance. The validity of 
using such techniques to compare the two models 
is questionable, leading us to depend upon tests 

of differences in the index values for both mod-
els, as was done earlier in the paper. 
 
Conclusions 

Conjoint analysis (CA) has increased in popular-
ity among agricultural economists in recent years. 
The technique has been used to estimate con-
sumer preferences for a variety of new food prod-
ucts, to analyze consumer preferences for food 
safety attributes, and to estimate consumers’ will-
ingness-to-pay for recreational services. An im-
portant methodological question among these stud-
ies is whether interval-rating scales capture cardi-
nal information, which has implications for model 
selection. This paper develops formal procedures 
for testing cardinal and ordinal assumptions in 
conjoint analysis. Theoretical concepts of equal 
interval and ordinal scaling are linked to the un-
derlying assumptions of the TLT and OP models. 
The paper shows how an OP model can be used 
to test the equal interval assumptions of the TLT 
model. The analysis involves using Wald proce-
dures to test the null hypothesis of equally spaced 
thresholds in the OP model. The null hypothesis 
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was tested and rejected for three separate conjoint 
data sets, implying that the underlying cardinality 
assumption of the TLT model is invalid for these 
samples. Therefore, we conclude that the OP model 
is the theoretically correct model for estimating 
part-worth parameters for these samples. However, 
the equal-interval assumption may hold for other 
studies given different experimental conditions. 
 Since the TLT model is often used in the agri-
cultural economics literature to estimate part-
worth values, the effects of model misspecifica-
tion are examined by analyzing index function 
parameters. Casual inspection of the standardized 
part-worth parameters showed little difference 
between the TLT and OP models. Moreover, the 
Hausman null hypothesis was rejected for all 
three data sets, indicating that TLT part-worth 
estimates are not statistically different from the 
OP estimates. Therefore, despite rejection of the 
equal interval assumptions of the TLT model, the 
models yield virtually identical estimates of the 
underlying utility scale. This implies that the TLT 
model provides a close approximation of the 
theoretically correct OP model, and that the TLT 
estimates are not particularly sensitive to the car-
dinality assumption. This is an important finding 
since estimating the underlying utility scale is the 
central focus of most CA studies. Additionally, in 
studies where degrees of freedom are constrained, 
the TLT model may be preferable since it gener-
ally requires fewer degrees of freedom for estima-
tion. This is particularly relevant for studies that 
estimate individual-level models. 
 Unlike the analysis of index function parame-
ters, comparisons of predicted values for the two 
models lead to inconclusive results. The two 
models yield conceptually different predictions 
for the observed interval-rating scale. The TLT 
model assumes equal spacing and continuity of 
the observed scale, thus yielding non-integer pre-
dictions. The OP model assumes ordinal spacing 
of the observed scale, thus yielding discrete pre-
dictions that result in numerous ties between ac-
tual and predicted values. Moreover, comparison 
of predicted values using standard techniques for 
analyzing rank-order data, such as SRC coeffi-
cients, γ, and Kendall’s τ, are invalid. Spearman’s 
rank-order coefficient favors the TLT model be-
cause of the non-integer nature of its predictions, 
whereas γ and Kendall’s τ favor the OP model 
because they measure the degree of concordance. 

 Our general conclusion is that, while modern 
economic theory and the empirical rejection of 
equal-interval cardinality suggest that the OP is 
theoretically superior to the TLT model, re-
searchers relying upon part-worth estimates from 
conjoint analyses are unlikely to find significant 
differences in the part-worth estimates between 
the two models. Theory leads to recommendation 
of the OP model, while empirical evidence sug-
gests that, in estimating part-worth utilities, either 
can be used. In cases where there are too few 
degrees of freedom to estimate an OP model, the 
TLT is likely to be the best option. The similarity 
in model estimates also implies that utility esti-
mates are not particularly sensitive to assump-
tions regarding interpersonal comparisons. In 
fact, if one carefully plans the conjoint design, 
there are often enough degrees of freedom to es-
timate individual preference functions using the 
TLT model, which avoids the pooling of individ-
ual preferences altogether. Individual estimates 
are usually not possible with the OP model. 
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