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Entry, Exit, and Structural Change in 
Pennsylvania’s Dairy Sector 
 
Jeffrey R. Stokes 
 
 Data on the number of Pennsylvania dairy farms by size category are analyzed in a Markov 

chain setting to determine factors affecting entry, exit, expansion, and contraction within the 
sector. Milk prices, milk price volatility, land prices, policy, and cow productivity all impact 
structural change in Pennsylvania’s dairy sector. Stochastic simulation analysis suggests that 
the number of dairy farms in Pennsylvania will likely fall by only 2.0 percent to 2.5 percent 
annually over the next 20 years, indicating that dairy farming in Pennsylvania is likely to be a 
significant enterprise for the state in the foreseeable future. 
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The structure of American agriculture continues 
to evolve toward fewer, larger farming units. For 
example, according to the U.S. Department of 
Agriculture, since 1940 the number of farms in 
the United States has declined by about 66 per-
cent, while over the same period average farm 
size (in acres) increased by about 161 percent. In 
Pennsylvania, the number of dairy farms operat-
ing within the state was about 22,000 in 1980 and 
about 9,600 in 2003, representing a decline of 56 
percent (USDA, various issues). The declining 
number of dairy farms and questions regarding 
what the future holds for dairying in Pennsylvania 
are critically important for policymakers, agri-
businesses, dairy producers, and those involved in 
higher education through research, extension, and 
teaching. States like Pennsylvania perhaps have 
more at stake regarding the issue, given the pre-
dominance of a single commodity (i.e., dairy). 
 While not often thought of as an agricultural 
state, Pennsylvania’s dairy sector is sizeable. In 
2003, Pennsylvania dairy farms managed about 
575,000 milk cows that produced a total of 10.3 
billion pounds of milk. Both of these statistics 
make Pennsylvania the fourth largest dairy state 
in the nation with respect to cow numbers and 
milk production. However, dairy production in 
Pennsylvania oftentimes co-exists with a popula-
tion that is less than enthusiastic about large dairy 

farms and, somewhat paradoxically, less than en-
thusiastic about fewer dairy farms as well. 
 Much of the state’s dairy cows and production 
are in the Chesapeake Bay watershed, with high 
concentrations in the southeastern part of the state 
near large population centers. The nature of the 
relationship between production agriculture and 
the urban fringe in Pennsylvania has given rise to 
numerous legislative efforts to protect the envi-
ronment as well as agriculture. For example, the 
U.S. Environmental Protection Agency’s Air Qual-
ity Consent Agreement and Concentrated Animal 
Feeding Operation regulations are clearly designed 
to protect the environment. Programs such as the 
Pennsylvania Department of Agriculture’s Agri-
cultural, Communities and Rural Environment Ini-
tiative (ACRE), farmland preservation programs, 
and the Next Generation Farmer Loan Program 
are all designed to protect current and future gen-
erations of agricultural producers in Pennsylvania. 
 The future of dairy farming in Pennsylvania 
and Pennsylvania’s role as a leading dairy state 
are important issues for others as well. Agribusi-
nesses have a stake in the livelihood of the state’s 
dairy sector through the inputs they provide to the 
sector such as purchased feed, pharmaceuticals, 
and machinery and equipment. In addition, the 
state has a large investment in milk processing 
infrastructure, which employs many of the state’s 
rural residents. Dairy producers themselves have 
an interest in better understanding the drivers of 
structural change in the sector since many are 
facing critical issues such as whether or not to 
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expand, when to retire, and how best to facilitate 
intergenerational transfer. Perhaps one of the most 
concerned entities is Pennsylvania State Univer-
sity’s College of Agricultural Sciences, which has 
a commitment to conduct research and provide 
resident and non-resident education that is in 
large part related to dairy farming. 
 As consolidation continues, there is a need to 
identify and better understand the factors that 
influence structural change. Additionally, quanti-
fying the extent of consolidation is a critical first 
step toward better understanding where the sector 
is headed in terms of the number and typical size 
of farming operations. Exploring policy options 
that can potentially influence the rate of consoli-
dation in Pennsylvania’s dairy sector will be eas-
ier if a better understanding of the dynamics of 
farm size can be obtained as a result. 
 Therefore, the objectives of this research are 
threefold. First, the primary drivers of structural 
change in Pennsylvania’s dairy sector are identi-
fied. These are factors that influence entry into 
dairying, exit from dairying, and consolidation 
within the sector. A second objective is to inves-
tigate what the future may hold for Pennsyl-
vania’s dairy sector in terms of the geographic 
distribution of dairy farms within the state and the 
total number of dairy farms in the state. If such an 
analysis suggests that in all likelihood there will 
be few dairy farms in Pennsylvania in the future 
if the status quo is maintained, resources can be 
allocated today to increase or decrease the likeli-
hood of such an outcome, depending on society’s 
goals. 
 To accomplish these objectives, a Markov 
chain model of farm size is employed. However, 
unlike all past research that makes use of this 
methodology, dating to at least Padberg (1962), 
the Markov chain model developed here is shown 
to be an appropriate methodology under a mini-
mal set of assumptions regarding the producer’s 
objectives and sources of risk facing the business. 
This leads to the third objective of this research, 
which is to demonstrate the conditions under 
which the Markov chain model is appropriate for 
analyzing farm size adjustment over time. 
 
Markov Processes and Farm Size 
 
Padberg (1962) was the first to suggest the use of 
Markov chains as a methodology for better un-

derstanding firm size dynamics in agriculture by 
applying the methodology to California fluid milk 
processors. Since then, numerous researchers have 
applied the Markov chain model in various ag-
ricultural settings. Lee, Judge, and Takayama 
(1965), Disney, Duffy, and Hardy (1988), and 
Gillespie and Fulton (2001) all examine hog op-
erations, while Hallberg (1969), Ethridge, Roy, 
and Myers (1985) and Kim, Lin, and Leath (1991) 
examine dairy processing, cotton ginning, and 
flour milling agribusinesses, respectively. Other 
uses of the Markov model include Chan (1981) 
for the Canadian cattle industry and Garcia, Of-
futt, and Sonka (1987) for Illinois crop farms. 
Chavas and Magrand (1988), Zepeda (1995a), 
Zepeda (1995b), and Rahelizatovo and Gillespie 
(1999) apply the methodology to dairy farms in 
Wisconsin, Louisiana, and other multi-state re-
gions of the United States. 
 It is important to point out that in all of these 
previous studies, it is assumed that farm or firm 
size is a stochastic process that possesses the Mar-
kov property. A stationary (continuous time) Mar-
kov chain is a stochastic process X(t) with the prop-
erty that the conditional distribution of the future, 
X(t+ s) s > t, given the present, X(t), and the past, 
X(u) u < t, depends only on the present and is in-
dependent of the past. This is why the Markov 
property is often termed the memoryless property. 
Mathematically, this implies pr{X(t + s) = 
j | X(t) = i, X(u) = x(u), 0 ≤ u < t} = pr{X(t + s) = 
j |X(s) = i} = pij, where i and j are states frequented 
by the process.1 In the context of firm size, the 
states making up the Markov chain are size 
categories. For farms, acres or the number of 
head of livestock typically define the states so 
that the transition probabilities suggest the prob-
ability of a farm in size category i at time t mov-
ing to size category j at time t+ 1. 
 While it is natural to think of firm size as a 
Markov process, perhaps a more desirable setting 
is one in which firm size is shown to be Mark-
ovian through some properly specified structural 
model. Such an approach also offers the advan-
tage of allowing the structural model to guide the 
researcher in terms of the identification of the 
appropriate economic variables that influence the 
state transition probabilities. 
                                                                                    

1 Non-stationary Markov chains are also possible where oftentimes 
economic variables are the source of the non-stationarity. 
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 As it turns out, a relatively simple stochastic 
optimal control model can be used to demonstrate 
the conditions under which firm size is Mark-
ovian. Such a model is presented in the Appen-
dix. While the model is loosely cast in the context 
of a dairy farm, its basic structure lends itself to 
any type of firm that makes decisions in a dy-
namic framework. In addition, the model dramati-
cally simplifies the decision environment facing 
an actual dairy farmer. The reason for this simpli-
fication is to identify a minimal set of assump-
tions that justify the Markov chain model as an 
appropriate approach for investigating firm size 
dynamics. A secondary goal of the model is to 
show how the framework lends insight into the 
relevant state variables that affect transition prob-
abilities. This result has important empirical im-
plications for estimating non-stationary transition 
probabilities, as shown in a subsequent section of 
the paper. 
 
 
Empirical Prerequisites 
 
If micro-level data are available, the estimation of 
transition probabilities for each time period for 
which data are available can be accomplished via 
the method of maximum likelihood (ML). Hall-
berg (1969) did this and presented a test for de-
termining whether the transition probabilities 
were stationary or non-stationary. Stationary tran-
sition probabilities are simply the average of the 
estimated (periodic) transition probabilities. In 
later work, Rahelizatovo and Gillespie (1999) 
also used ML to estimate non-stationary transition 
probabilities. Hallberg’s (1969) and Rahelizatovo 
and Gillespie’s (1999) work are important be-
cause they represent the only attempt at explain-
ing non-stationary transition probabilities by re-
gressing the estimated probabilities on explana-
tory variables. Hallberg (1969) and Rahelizatovo 
and Gillespie (1999) accomplished this because 
they had access to micro-level data which per-
mitted the estimation of the transition probabili-
ties as a first step. 
 The problem often faced by researchers is the 
lack of micro-level data. For example, to use the 
ML method for a farm size problem, the number 
of farms that moved from each state to other 
states, the number that entered farming, and the 
number that exited would all have to be known at 

each point in time. At best, it is typically the case 
that only the total number of farms in each size 
category is available from which the net change 
(typically net exit) can be determined by com-
paring the number of farms at time t with that of 
t+ 1. 
 To circumvent the problem created by a lack of 
micro-level data, aggregate share data are some-
times used to estimate transition probabilities. 
Estimation of transition probabilities from aggre-
gate share data has its origins in the work by Lee, 
Judge, and Takayama (1965) as well as in later 
work by Lee, Judge, and Zellner (1973). Much of 
that work uncovers properties and problems 
associated with various parametric estimators of 
transition probabilities when using share data. 
One of the most important problems facing the 
applied researcher when using parametric tech-
niques is the fact that negative degrees of free-
dom can be encountered even in the stationary 
setting if the state space of the Markov chain is 
large and/or the number of time-ordered observa-
tions from which estimation is conducted is small. 
The non-stationary case induced by adding ex-
planatory variables into the estimation poses even 
more problems with degrees of freedom because 
parameters would presumably need to be esti-
mated for at least the majority of the probabilities 
in the transition probability matrix. 
 One way to minimize the impact of degree of 
freedom problems is to use maximum entropy 
(ME) estimation, suggested by Golan, Judge, and 
Miller (1996) and Lee and Judge (1996). The ME 
estimation is a nonparametric technique and is 
useful when the data are limiting or the economic 
problem underlying the need for estimation is ill-
posed. All that is required is that the underlying 
stochastic process under study be a Markov proc-
ess. For the farm size problem, this assumption is 
plausible given the results presented in the Ap-
pendix. 
 Estimation of non-stationary transition prob-
abilities is best approached from a cross-entropy 
formulation, which makes use of a prior as shown 
below (see Golan, Judge, and Miller 1996). The 
formulation for a given t is 

 
(1) 

 
min ( )( , ) ( )ln

( )
ijm

ijm
ijmt i j mijm

tt
t

π⎛ ⎞Ψ = π ⎜ ⎟ηπ ⎝ ⎠
∑∑∑∑η π , 
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The matrix π (η ) with elements πijm(t) (ηijm) is a 
matrix of non-stationary transition probabilities 
(prior transition probabilities) to be estimated, 
and Ψ(η,π) is the Shannon entropy measure. The 
first constraint in (2) represents the Markov rela-
tion where yj(t) is the proportion of farms in the 
j th state of the Markov chain at time t and δm is a 
vector of parameter supports. The parameter sup-
port vector allows for the estimation of a discrete 
distribution of transition probability estimates 
(one for each parameter support value). The sec-
ond constraint is the row sum condition which 
ensures that the underlying Markov process does 
not leave the discrete state space. The third con-
straint ensures that the discrete distribution of 
transition probabilities sums up to one, while the 
last constraint represents the non-negativity con-
dition imposed on the probabilities. Notice that 
the specification does not require the addition of 
an error term on the Markov relation since a ma-
trix of transition probabilities is estimated from 
each transition of the data. 
 While the cross-entropy formulation presented 
above could be expanded to accommodate a set 
of state variables that influence the dynamics of 
the system under study, an alternative approach is 
to use the entropy-generated transition probabili-
ties in a parametric setting. In the Appendix, it is 
shown that the transition probabilities depend on 
a collection of relevant state variables, s(t), so 
that [ ( )] ( )ij ij tπ = πs t , and it is the state variables 
that induce the nonstationarity of the transition 
probabilities. Therefore, the cross-entropy model 
in (1) subject to (2) can be used to estimate a ma-
trix of transition probabilities for each transition 
of the data. These data can then be used along 
with data on the state variables in a parametric 
setting to estimate the influence that each state 
variable has on the associated entropy estimated 
transition probabilities. The advantage of this ap-

proach is that standard tests of significance can 
then be applied for identifying the factors affect-
ing the transition probabilities. 
 As noted above, the η matrix is a matrix of 
prior probabilities. While numerous methods 
could be employed to uncover a prior, it would 
seem that one sensible method would be to esti-
mate a prior consistent with a stationary Markov 
chain, that is, with all the probabilities fixed 
through time. An entropy formalization of the 
stationary Markov problem is 
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ijm ijm
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 In (3) subject to (4), we seek a discrete 
distribution of transition probabilities and allow 
for the possibility that there is error in the Markov 
relation by including an error term expressed as 
the product of an error support vector, γm, and 
errors, λtjm. Of course, a prior is required for this 
specification as well, and by default, a uniform 
prior is assumed. 
 Once the prior matrix of stationary transition 
probabilities is estimated, non-stationary transi-
tion probabilities can then be estimated, and it 
remains to empirically relate them to the vector of 
state variables, s(t), hypothesized to impact the 
transition probabilities over time. For this step, 
Zellner’s (1962) Seemingly Unrelated Regression 
(SUR) is used as in Rahelizatovo and Gillespie 
(1999). Each transition probability of interest is re-
gressed against the set of state variables. More 
formally, 
 

(5) ( )1
0, ,

1
( ) ( ) ( )

K

ij ij k ij k ij
k

t s t t−

=

Φ π = β + β + ε∑ , 



Stokes Entry, Exit, and Structural Change in Pennsylvania’s Dairy Sector   361 
 

 

where it is assumed that the regression distur-
bances in different equations are mutually corre-
lated. In (5), Φ-1(⋅) represents the inverse of the 
standard normal distribution and is used to trans-
form the probabilities from the zero-one interval 
to a continuous interval. It is important to note 
that even with the current ME approach, degree 
of freedom problems can preclude investigating 
all the probabilities in the matrix, as shown in the 
next section of the paper. 
 
Empirical Application 
 
Empirical estimation of non-stationary transition 
probabilities using the cross-entropy formulation 
presented in the preceding section was conducted 
using USDA data on the number of Pennsylvania 
dairy farms in various size categories from 1980 
to 2003. One potential problem is that the size 
categories used by USDA sometimes change over 
time. For example, prior to 1997, no data were 
kept on the number of dairy farms with 500 or 
more head. These data were simply reported as 
the number of dairy farms with 200 or more head. 
Similarly, prior to 1993, no data were kept on the 
number of dairy farms with 200 or more head. 
These data were reported as the number of dairy 
farms with 100 or more head. In some settings, it 
may be appropriate to simply combine the data in 
the 500+ and 200–499 head categories now 
reported in the 100+ head category (now 100–199 
head). However, the emphasis of this research is 
on quantifying the progression of farm size and 
the identification of variables that influence it. 
Therefore, it would seem that better information 
may be obtainable by recovering the missing data 
rather than by limiting the number of states in the 
Markov chain. 
 To this end, a simple entropy-based model was 
specified to let the data determine the most likely 
number of 500+ head dairy farms prior to 1997 
and the most likely number of 200–499 head 
dairy farms prior to 1993 from the totals that were 
actually reported. The cross-entropy model speci-
fied is 
 
(6)

 ( ) ( ) min ( ) ln ln ,
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 The model (6) subject to (7) was run one transi-
tion of the data at a time beginning with the most 
recent observation for which no data on 500+ 
cow herds were available. The notation imy  
represents the missing proportional data, where z 
is the largest state for which data are available. 
For example, when the model is run to determine 
how many 500+ head dairy farms there were in 
Pennsylvania in 1996, it estimates a transition 
probability matrix (the φij’s) and, from the infor-
mation available in the data, determines an en-
tropy-maximizing way of finding what proportion 
of the 200–499 head data should be allocated to 
the 500+ head state. An identity matrix was used 
as the initial prior, with each estimated matrix 
used as the prior for each subsequent application 
of the model. 
 Shown in Table 1 are the original data as col-
lected and reported by USDA, while presented in 
Table 2 are the reconstructed data after applying 
the entropy model in (6) and (7). Also shown in 
each table are the actual farm size states of the 
Markov chain to be modeled, namely, herd sizes 
of 1–29 head, 30–49 head, 50–99 head, 100–199 
head, 200–499 head, and 500+ head. An addi-
tional state representing entry and exit must also 
be accommodated since proportional entry and 
exit from dairy is probably not realistic. Entry and 
exit are modeled as an extra state representing a 
pool from which entry can occur and exiting 
farms can go. Therefore, 6-herd–size states plus 
entry/exit equals a 7×7 transition probability ma-
trix with 49 probabilities per time period. How-
ever, the row sum condition implies that only 42 
of these need to be estimated at each time period. 
 
Empirical Results 
 
Given the magnitude of transition probabilities 
estimated, a complete presentation is not practi-
cal. Presented in Table 3 are the mean and stan-
dard deviation of the estimated probabilities over 
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Table 1. Reported Number of Pennsylvania Dairy Farms by Herd Size Category 
 Number of Head 

Year 1–29 30–49 50–99 100+ 200+ 500+ Total 

1979 11,330 6,380 3,410 880 – – 22,000 
1980 10,780 6,600 3,630 990 – – 22,000 
1981 9,345 6,825 3,885 945 – – 21,000 
1982 9,135 6,615 4,200 1,050 – – 21,000 
1983 9,135 6,300 4,515 1,050 – – 21,000 
1984 8,106 6,405 5,397 1,092 – – 21,000 
1985 8,211 6,300 5,292 1,197 – – 21,000 
1986 7,001 6,006 5,304 1,190 – – 19,500 
1987 6,290 5,902 5,106 1,203 – – 18,500 
1988 5,705 5,705 4,988 1,103 – – 17,500 
1989 5,198 5,297 4,802 1,205 – – 16,500 
1990 4,805 5,100 4,402 1,194 – – 15,500 
1991 4,292 4,800 4,205 1,204 – – 14,500 
1992 3,900 4,600 4,300 1,200 – – 14,000 
1993 3,400 4,300 4,200 930 170 – 13,000 
1994 3,200 4,100 4,100 930 170 – 12,500 
1995 2,800 3,900 3,900 1,000 200 – 11,800 
1996 2,600 3,800 3,900 1,000 200 – 11,500 
1997 2,400 3,800 3,800 1,100 190 10 11,300 
1998 2,300 3,800 3,800 1,050 235 15 11,200 
1999 2,300 3,700 3,800 930 255 15 11,000 
2000 2,000 3,800 3,700 920 260 20 10,700 
2001 1,800 3,700 3,600 910 260 30 10,300 
2002 1,900 3,300 3,400 890 270 40 9,800 
2003 2,000 3,000 3,300 980 280 40 9,600 

Source: USDA (various issues). 
 
the sample period. Employing a bootstrapping 
technique provides some guidance on the stability 
of the estimated transition probabilities. Transi-
tion probabilities in the shaded cells of the table 
are statistically significantly different from zero 
and, as shown, tend to be concentrated along the 
diagonal, the upper triangular portion, the right-
most column, and the bottom row. These four 
areas correspond to farms remaining in their cur-
rent size category, becoming larger, exiting, and 
entering. 
 As shown, most of the probability mass tends 
to be centered on the diagonal, indicating the high 
probability of farms remaining in the same size 
over time. The remaining probability mass tends 
to suggest changing farm size over time, along 
with a probability of exit that decreases as farm 
size increases. Entry tends to be a smaller farm 

phenomenon, while many entering the business of 
dairy farming in Pennsylvania exit the industry a 
year later (bottom row). These results are consis-
tent with conventional wisdom and past research 
on a variety of farm types (e.g., Chavas and Ma-
grand 1988, Disney, Duffy, and Hardy 1988, Gar-
cia, Offutt, and Sonka 1987, Zepeda 1995a, and 
Gillespie and Fulton 2001). The fact that there 
can be some downward pressure on size adjust-
ments that in many cases is stronger than the up-
ward pressure is perhaps an indication of the 
potential for a bimodal distribution of farm sizes. 
 
Seemingly Unrelated Regression Results 
 
Degrees of freedom preclude the estimation of an 
equation for each probability in Table 3, so the 
equations in (5) were estimated for a subset of the 
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Table 2. Reconstructed Number of Pennsylvania Dairy Farms by Herd Size Category 
 Number of Head 

Year 1–29 30–49 50–99 100–199 200–499 500+ Total 

1979 11,330 6,380 3,410 813 67 0 22,000 
1980 10,780 6,600 3,630 915 75 0 22,000 
1981 9,345 6,825 3,885 864 81 0 21,000 
1982 9,135 6,615 4,200 958 92 0 21,000 
1983 9,135 6,300 4,515 946 104 0 21,000 
1984 8,106 6,405 5,397 976 116 0 21,000 
1985 8,211 6,300 5,292 1,069 128 0 21,000 
1986 7,001 6,006 5,304 1,057 132 0 19,500 
1987 6,290 5,902 5,106 1,064 138 0 18,500 
1988 5,705 5,705 4,988 959 144 0 17,500 
1989 5,198 5,297 4,802 1,057 147 0 16,500 
1990 4,805 5,100 4,402 1,039 155 0 15,500 
1991 4,292 4,800 4,205 1,044 160 0 14,500 
1992 3,900 4,600 4,300 1,035 165 0 14,000 
1993 3,400 4,300 4,200 930 170 0 13,000 
1994 3,200 4,100 4,100 930 170 0 12,500 
1995 2,800 3,900 3,900 1,000 199 1 11,800 
1996 2,600 3,800 3,900 1,000 194 6 11,500 
1997 2,400 3,800 3,800 1,100 190 10 11,300 
1998 2,300 3,800 3,800 1,050 235 15 11,200 
1999 2,300 3,700 3,800 930 255 15 11,000 
2000 2,000 3,800 3,700 920 260 20 10,700 
2001 1,800 3,700 3,600 910 260 30 10,300 
2002 1,900 3,300 3,400 890 270 40 9,800 
2003 2,000 3,000 3,300 980 280 40 9,600 

 
 
Table 3. Mean and Standard Deviation of Transition Probability Estimates (1980–2002) a,b 

t+1 
 t 1 to 29 30 to 49 50 to 99 100 to 199 200 to 499 500+ Exit 

1–29 0.8051 

(0.0372) 
0.0478 

(0.0073) 
0.0314 

(0.0091) 
0.0051 

(0.0047) 
0.0014 

(0.0014) 
0.0001 

(0.0001) 
0.1092 

(0.0261) 

30–49 0.0295 
(0.0066) 

0.8312 
(0.0159) 

0.0735 
(0.0100) 

0.0020 
(0.0033) 

0.0008 
(0.0012) 

0.0002 
(0.0003) 

0.0628 
(0.0141) 

50–99 0.0000 
(0.0000) 

0.0593 
(0.0063) 

0.8696 
(0.0158) 

0.0254 
(0.0093) 

0.0006 
(0.0011) 

0.0003 
(0.0005) 

0.0449 
(0.0117) 

100–199 0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0612 
(0.0048) 

0.8975 
(0.0097) 

0.0068 
(0.0011) 

0.0000 
(0.0000) 

0.0344 
(0.0043) 

200–499 0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0146 
(0.0004) 

0.9853 
(0.0005) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

500+ 0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.9999 
(0.0001) 

0.0000 
(0.0000) 

Entry 0.2459 
(0.0525) 

0.1712 
(0.0434) 

0.0601 
(0.0080) 

0.0003 
(0.0004) 

0.0001 
(0.0001) 

0.0000 
(0.0000) 

0.5224 
(0.0711) 

a The top entry in each cell is the mean transition probability estimated as the average over the 1980 to 2002 period. The bottom 
entry is an estimate of the standard deviation. 
b The shaded cells have mean values that are significantly different from zero. 
 
 
probabilities. As Zepeda (1995a) points out, it is 
desirable to allow the explanatory variables to be 
different across equations since factors affecting 

entry and exit are likely different than those af-
fecting size adjustments over time. For this rea-
son, and because size adjustments (up or down) 
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are of greater interest than non-changing size, 
equations for the probabilities along the diagonal 
were not specified. Of the 23 probabilities from 
Table 3 that are statistically significantly different 
from zero, ignoring the diagonal leaves 16 equa-
tions to be estimated. 
 The variables hypothesized as influencing all of 
the transition probabilities are the price of milk, 
the volatility of milk price, interest rates, and land 
values. Milk prices have been used as an ex-
planatory variable by Rahelizatovo and Gillespie 
(1999) in their analysis of Louisiana dairies, 
while interest rates have been used as an ex-
planatory variable by Chavas and Magrand (1988) 
and Zepeda (1995a) in their analyses of Wiscon-
sin dairies.2 High milk prices and low interest 
rates are hypothesized to attract entrants, foster 
expansion, and reduce exits from dairy. 
 Since the data span the time period during 
which the dairy termination program was in place, 
a dummy variable representing the program was 
included in the estimation of the equations de-
scribing the probability of exit from dairying. 
This variable is also consistent with research by 
Zepeda (1995a) and Rahelizatovo and Gillespie 
(1999). 
 Milk price volatility and land values have not 
been previously used in studies of agricultural 
structural change in dairy. Milk price volatility 
has increased in recent years and can have a per-
vasive influence on the decision to enter dairying 
as well as the decision to expand. Using real op-
tion theory, Tauer (2004) has hypothesized that 
the presence of milk price uncertainty implies that 
there is value in waiting to enter and exit dairy 
farming. 
 Zepeda (1995a) uses debt capital as a balance 
sheet explanatory variable. However, escalating 
land values in Pennsylvania are likely a more 
meaningful balance sheet variable for explaining 
entry and expansion deterrence, as well as one 
form of the exit decision, namely, retirement. 
This variable is also consistent with the structural 
model presented in the Appendix. Also consistent 
with the analytic model presented in the Appen-
dix is the explanatory variable average milk pro-
duction per cow. This variable is hypothesized to 
                                                                                    

2 Chavas and Magrand (1988) and Zepeda (1995a) also use milk price 
as an explanatory variable but as a ratio of milk price to feed cost. In 
the present study, this variable had little predictive power in explaining 
transition probabilities. 

positively influence expansion of the dairy herd 
since, according to the Pennsylvania Agricultural 
Statistics Service (PASS), larger farms (i.e., more 
head) tend to produce, on average, more milk per 
cow. Zepeda (1995b) uses a variable such as this 
to measure the effect of technical change on farm 
structure, while Chavas and Magrand (1988) use 
it to investigate the effect of size economies on 
structural change. Rahelizatovo and Gillespie 
(1999) also use average milk/cow as a variable 
that describes expansion, contraction, and exit in 
Louisiana dairies. 
 Pennsylvania’s annual average wholesale milk 
price per hundredweight reported by PASS is 
used as the price state variable, while the standard 
deviation of monthly wholesale milk prices repre-
sents annual milk price volatility. While not the 
price that producers actually receive, wholesale 
milk prices tend to track well with milk prices 
received by producers. Land values as reported 
by PASS, denoted by v(t) in the structural model 
in the Appendix, are a state average and are in 
dollars per acre. Data on herd milk production, 
denoted by q(t) in the structural model in the Ap-
pendix, was unavailable, so a proxy variable rep-
resenting production per cow for each herd size i 
and collected by PASS was used in the equations 
describing farm size adjustments (up or down) 
only. Further, the variable used was the target 
level of production consistent with the size ad-
justment. For example, the transition from 1 to 29 
head to 30 to 49 head is a function of the milk 
production per cow in the 30–49 head size cate-
gory. Lastly, the prime rate reported by the Fed-
eral Reserve (2006) was used as a proxy for the 
cost of capital. While the prime rate is not the rate 
potentially acting as barrier to entry or expansion, 
it is likely correlated with the actual cost of capi-
tal facing dairy producers. Lastly, each variable is 
lagged one year to be consistent with the notion 
of entry, exit, and herd size change decisions be-
ing made with the best available information (Gil-
lespie and Fulton 2001). 
 As shown in Table 4, there is generally a high 
degree of significance among the variables cho-
sen to explain each of the transition probabilities. 
Consistent with Rahelizatovo and Gillespie (1999), 
milk prices negatively impact the probability of 
exit from dairy farming, while milk price volatil-
ity and land values both have a positive impact on 
the probability of exiting from dairy farming. The 
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dairy termination program also positively impacted 
exit from dairy in Pennsylvania, which is consis-
tent with Rahelizatovo and Gillespie’s (1999) find-
ing for Louisiana dairies but not consistent with 
Zepeda’s (1995a) for Wisconsin dairies. Interest 
rates appear to have no effect on the probability 
of exiting dairy farming, which is not consistent 
with Rahelizatovo and Gillespie’s (1999) or Ze-
peda’s (1995a) findings. 
 By contrast, few of the structural variables af-
fect entry into dairying in any meaningful way. 
For relatively small startup dairies, milk price 
volatility has a negative impact on the probability 
of entry, while milk prices and land values tend to 
raise the probability of entry. This last result, 
while somewhat counterintuitive, is not com-
pletely unexpected as land prices have generally 
risen over the sample period, as have entrants into 
the smallest herd size state. 
 In terms of herd size adjustment, milk prices 
tend to play a role only on the probability of ex-
panding the size of the dairy farm from a small- 
to medium-sized operation. Rahelizatovo and Gil-
lespie (1999) found that higher milk prices in-
creased the probability of small and large dairy 
farms remaining in their size categories. How-
ever, the probability of expanding or contracting 
the herd size is negatively impacted by milk price 
volatility for small- and medium-sized dairy farms. 
Also, small dairy farms likely face a significant 
barrier to expansion in land values, as evidenced 
by the negative coefficient estimated for the land 
price variable on the probability of expanding 
herd size from one to 29 head to 30 to 49 head. 
Small farms in Southeastern Pennsylvania, for 
example, are often faced with significant land 
values that tend to curtail expansion. 
 Lastly, the probability of adjusting herd size is 
typically positively impacted by the milk produc-
tion per cow typical of the herd after expansion. 
This result is consistent with past research, such 
as Rahelizatovo and Gillespie (1999) as well as 
Chavas and Magrand (1988), which indicates that 
per cow productivity and economies of size play 
an important positive role in dairy farm size 
structural change. Zepeda (1995b) found that on 
Wisconsin dairy farms, technical change had no 
measurable impact on the probability of adjusting 
herd size. 

Changing Share of Pennsylvania Dairy Farms 
 
To get an idea of how the concentration of dairy 
farming has changed throughout the state of Penn-
sylvania over time, transition probabilities were 
also estimated for the proportion of dairy farms 
attributable to each crop-reporting district. In this 
setting the crop-reporting districts represent the 
states of the Markov chain and the transition 
probabilities measure the likelihood that the share 
of dairy farms in crop-reporting district i remain 
intact or are lost through exit. Transition prob-
abilities were estimated using the stationary model 
presented in (3) subject to (4), with additional 
constraints to ensure that the transition probabili-
ties capture the fact that farms do not generally 
move from one region to another. One exception 
is the migration of Amish farms from the South-
eastern and South Central crop-reporting districts 
to districts further west in the state.3 An identity 
matrix was used as a prior in conducting the esti-
mation. An identity matrix prior and stationary 
estimation impose the condition that the propor-
tion of dairy farms in each crop-reporting district 
is constant over time unless the data suggest oth-
erwise. 
 Table 5 presents stationary transition probabil-
ity estimates that suggest that the proportion of 
dairy farms does generally remain constant, with 
each crop-reporting district’s probability of main-
taining its current proportion of Pennsylvania 
dairy farms greater than 90 percent in all cases. 
Entry occurs for each region, with the East 
Central region experiencing the lowest number of 
new entrants and the Southeastern and Central 
regions experiencing the highest number of 
entrants. Exit also occurs for each region, and is 
highest for the Southwestern region while lowest 
for the Northwest region. Net entry (entry minus 
exit), while positive for four regions, is really 
significantly positive only for two regions, namely, 
the Southeastern (about 10 percent) and Central 
regions (about 3 percent). In fact, there is a small 
probability (about 1 percent) that Southeastern 
dairy farms relocate to the Central region. This 
last finding is consistent with recent events in 

                                                                                    
3 Many Amish-run dairy farms exit out of dairy in Southeastern Penn-

sylvania and have relocated in states like Indiana, New York, and 
Ohio. 
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Table 5. Stationary Transition Probability Estimates for the Proportion of Dairy Farms in Each 
Crop-Reporting District 

 Northwest North Central Northeastern West Central Central 

Northwest 97.2% – – – – 
North Central – 90.3% – – – 
Northeastern – – 90.3% – – 
West Central – – – 94.5% – 
Central – – – – 91.8% 
East Central – – – – – 
Southwestern – – – – – 
South Central – – – – – 
Southeastern – – – – 0.7% 
Entry 3.0% 9.1% 4.4% 3.2% 11.3% 

 East Central Southwestern South Central Southeastern Exit 

Northwest – – – – 2.8% 

North Central – – – – 9.7% 

Northeastern – – – – 9.7% 

West Central – – – – 5.5% 

Central – – – – 8.2% 

East Central 92.1% – – – 7.9% 

Southwestern – 90.0% – – 10.0% 

South Central – – 90.7% – 9.3% 

Southeastern – – – 94.7% 4.6% 

Entry 1.1% 5.1% 10.3% 14.9% 37.6% 

 

Pennsylvania where dairy farms have been liqui-
dated in high land value areas such as Lancaster 
County and subsequently relocated to Central 
Pennsylvania. 
 These results suggest that, in general, most 
regions in Pennsylvania have more exits than en-
trants. However, at least two regions have an in-
creasing share of the total number of dairy farms, 
indicating that the decline in the number of dairy 
farms within the entire state is likely not uniform, 
with some areas harder hit than others. The re-
sults also suggest that dairy farms in the South-
eastern region, the traditional Pennsylvania dairy-
ing region, have the most net entry and have had 
some farmers relocate their dairies to Central 
Pennsylvania, where land values are considerably 
lower. 

Stochastic Simulation Results 

To get an idea of what the future might hold for 
Pennsylvania dairy farming in terms of the num-

ber of dairy farms in each size category, a sto-
chastic simulation model was developed. Matri-
ces of transition probabilities were simulated by 
first simulating correlated state variable values 
out over a horizon of 20 years and then simulat-
ing correlated errors for each of the SUR equa-
tions over a 20-year period. Empirical distribu-
tions of the number of farms in each size category 
were then constructed and are presented in Figure 
1. Not surprisingly, the distribution of the total 
number of dairy farms shifts leftward and widens 
as the forecast period lengthens. This implies 
fewer dairy farms in the future and more uncer-
tainty about the exact number. 
 Presented in Table 6 are summary statistics for 
the simulated distributions appearing in Figure 1. 
As shown, the number of dairy farms is expected 
to fall from its 2003 level of about 9,600 to, on 
average, about 8,600 over the next 5 years, for a 
total reduction of just over 10 percent. All of the 
reduction is expected to come from farms with 
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Figure 1. Simulated Distributions of the Total Number of Pennsylvania Dairy Farms for Various 
Years 
 
 
less than 100 head, as farms with more than 100 
head are expected to increase in number from the 
2003 levels. 

 The results are similar for more distant years as 
the mean number of farms is expected to fall to 
about 7,700 by 2013 (just under a 20 percent re-
duction) and 5,800 by 2023 (just under a 40 per-
cent reduction). These numbers are suggestive of 
an average annual loss of about 2.0 percent to 2.5 
percent. The largest losses are the small dairy 
farms, while larger farms will continue to grow in 
number. Interestingly, the 100–199 cow herds ap-
pear to be a size category that is right at the break 
point between expansion and contraction. The av-
erage number of 100–199 head dairy farms is 
expected to increase from 980 in 2003 to 1,138 in 
2008, to a high of 1,176 in 2013, and then fall off 
to 1,098 by 2023. This result is potentially consis-
tent with the idea of a bimodal distribution of 
dairy farms in the future. Such a finding would be 
inconsistent with empirical evidence for U.S. 
dairies (Wolf and Sumner 2001), but may be a 
possibility in Pennsylvania. Even so, the most im-
portant feature of the simulations is that if the 
status quo is maintained, Pennsylvania will likely 
have a significant number of dairy farms for at 
least the next 20 years. In all likelihood, there 
may always be a significant number of dairy farms 

in Pennsylvania to serve the state’s fresh milk 
markets. 
 
 
Summary and Conclusions 
 
The primary purpose of this research has been to 
identify factors affecting structural change in 
Pennsylvania’s dairy sector, including growth and 
contraction as well as entry and exit from dairy-
ing. Milk prices, price volatility, land values, and 
the dairy termination program have all had perva-
sive effects on exit from dairying in Pennsyl-
vania. Similarly, milk price volatility is generally 
a deterrent to entry for small dairies, the size that 
new dairies entering the sector are most likely to 
be. Dairy farm size growth is inhibited by milk 
price volatility and land values, but responds 
positively to higher milk prices. Lastly, growth 
and contraction are positively related to produc-
tivity through milk production per cow. 
 From a policy perspective, it is clear that if the 
state of Pennsylvania desires to be known as a 
dairy state in the future, strong, stable milk prices 
are an important factor. While strong and stable 
milk prices have traditionally attracted new en-
trants to dairy, they have also provided signals to 
producers to expand their operations. Over time, 
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Table 6. Selected Statistics for Future Distribution of Farm Numbers by Size 

Year 
Farm Size 

(no. of head) Mean 
Standard 
Deviation Min. Max. 

% ∆ from 
2003 pa 

2008 1–29 1,307 167 709 2,123 -34.7% 95.43% 
 30–49 2,623 146 1,931 3,265 -12.6% 5.84% 
 50–99 3,174 162 2,527 3,829 -3.8% 0.51% 
 100–199 1,138 104 825 1,661 16.1% 33.41% 
 200–499 324 3 312 339 15.7% 0.86% 
 500+ 48 0 48 49 20.0% 90.83% 
 Total 8,615 355 7,152 10,235 -10.3% 0.56% 
        
2013 1–29 1,059 169 479 1,813 -47.1% 99.14% 
 30–49 2,148 184 1,372 2,898 -28.4% 91.42% 
 50–99 2,905 219 2,049 3,971 -12.0% 10.93% 
 100–199 1,176 148 707 2,052 20.0% 46.82% 
 200–499 362 6 338 394 29.3% 100.0% 
 500+ 56 0 54 58 40.0% 100.0% 
 Total 7,705 486 5,720 9,889 -19.7% 46.86% 
        
2023 1–29 811 321 0 3,324 -59.5% 98.23% 
 30–49 1,359 292 265 2,475 -54.7% 98.82% 
 50–99 2,091 356 184 3,497 -36.6% 94.93% 
 100–199 1,098 253 458 2,776 12.0% 32.94% 
 200–499 417 14 370 484 48.9% 100.0% 
 500+ 67 1 62 73 67.5% 100.0% 
 Total 5,843 945 1,914 10,674 -39.1% 97.31% 

a For 1–29 head, 30–49 head, 50–99 head, and total farms, the value reported is the probability of observing a number of farms 
less than 20 percent of 2003 level. For 100–199 head, 200–499 head, and 500+ head, the value reported is the probability of 
observing a number of farms in excess of a 20 percent increase from the 2003 level. 
 
it will become increasingly difficult for new en-
trants to secure enough capital to begin dairying, 
and state programs like the Next Generation 
Farmer Loan Program could provide a necessary 
tool for dealing with the issue. In recent years, 
milk prices have been more volatile, which has 
likely contributed to some of the exodus from 
dairy farming within the state. Efforts to stabilize 
prices could have a reversing effect. 
 Perhaps the most important factor contributing 
to the decline in the number of dairy farms is the 
value of agricultural land in Pennsylvania, espe-
cially in areas where there is significant dairy pro-
duction. High land values act as a barrier to entry 
and expansion, but also provide exit incentives 
for older farmers seeking to retire. The problems 
created by high land values for agricultural pro-
ducers will undoubtedly become more pro-
nounced in the future. As a result, Pennsylvania’s 
farmland preservation programs will likely be-

come an increasingly important policy mechanism 
for dealing with the problem. 
 A secondary contribution of the research has 
been to suggest what the future might hold for the 
number of dairy farms in Pennsylvania. It is clear 
that if the status quo is maintained, there will be 
fewer, larger dairy farms, with the rate of decline 
estimated to be about 2.0 percent to 2.5 percent 
annually over the next 20 years. Exiting dairy 
farms will be primarily smaller operations. How-
ever, negative growth rates such as these hardly 
suggest that there is no future in dairy in Pennsyl-
vania. It is likely that in 20 years, Pennsylvania 
will still have a significant number of dairy farms, 
although it remains unclear whether or not the 
state will still be producing a significant portion 
of the nation’s milk supply. 
 Lastly, a significant innovation of the research 
is the presentation of the linkage between an 
analytic model of the firm and the Markov chain 
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model used so often to conduct structural change 
studies. As long as the decision maker makes de-
cisions consistent with a dynamic planning hori-
zon and faces uncertainty that is Markovian, the 
size of the firm will also be Markovian, having 
inherited the property from the underlying 
sources of uncertainty through the optimization 
process. This puts the Markov chain methodology 
on a more solid foundation for analyzing firm 
size dynamics. 
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APPENDIX 
 
Let q(t) be a state variable representing time t 
milk production (say, in cwt) for a dairy herd 
with n cows. More clearly, milk production is a 
state variable with q(t) = q[x(t),n(t)], where x(t) is 
a vector input [the kth of which is xk(t)], and n(t) 
is the size of the herd (i.e., the number of cows to 
be milked). In this setting, x(t) and n(t) are deci-
sion variables that the farmer has control over. It 
is assumed that q(t) is a well-behaved production 
function.4 
 The objective of the producer is to maximize 
the discounted flow of profit from dairying plus 

                                                                                    
4 Namely, ∂q ( t ) /∂x k ( t )  ≥  0  for all k = 1,…,K and ∂q(t)/∂n(t) ≥ 0. 



Stokes Entry, Exit, and Structural Change in Pennsylvania’s Dairy Sector   371 
 

 

the terminal value of the farm’s land, v(T), over a 
finite planning horizon.5 Let ρ be the producer’s 
discount rate and let J(q,v,t) represent the time t 
value of the dairy farm conditional on the optimal 
use of inputs. The objective of the producer is 
then 
 
(A1) 

   [ ],
( , , ) max ( , )

( ),

T
s

t n
t

T

n
J q v t E e pq n w n

ds e v T

−ρ

−ρ

= − −

+

∫x
x wx   

 
where time dependence has been intentionally 
suppressed where no confusion can arise. The 
first term in (A1) represents the discounted flow 
of profit from dairying (revenue less input and 
cow costs), while the second term represents the 
present value of the farm’s terminal stock of land. 
The Et in (A1) is a time t expectation operator. 
 In this setting, each state variable must have an 
equation of motion that describes how the vari-
ables evolve over time. The following set of first-
order, stochastic differential equations (SDEs) de-
scribes this evolution: 
 
(A2) ( , , )

( , ) ( , ) .
q q

v v

dq q n t dz

dv v t dt v t dz

= σ

= µ + σ

 

 
As shown, milk production is a driftless stochas-
tic process with an instantaneous expected value 
equal to zero and instantaneous variance equal to 
 
  2 ( , , ) .q q n t dtσ  
 
Notice that the volatility of the change in milk 
production depends on how much is being pro-
duced as well as the decision regarding the num-
ber of cows to milk. In this setting, there is likely 
an optimal number of head of cows to milk given 
the farmer’s managerial ability.6 

                                                                                    
5 A finite planning horizon and the inclusion of a terminal value are 

unnecessary to show that farm size is Markovian. However, as shown 
below, such a specification does demonstrate how such state variables 
come to influence transition probabilities. 

6 For example, ∂σq/∂n would be negative (positive) if managerial 
ability is under- (over-) capitalized.  

 Land values are assumed to increase over time 
with an instantaneous expected value equal to 

( , ) v t dtµ and variance equal to 
 
  2 ( , ) ,v v t dtσ  
 
although their moments are unrelated to the con-
trol variables. Like the production function in (A1), 
the functional forms of the drift and diffusion terms 
in (A2) are left unspecified to promote generality. 
However, an important feature of the equations in 
(A2) for what follows is the assumption that each 
SDE possesses the Markov property. This is a 
minor assumption in that all first-order SDEs with 
an initial condition and solution possess the Mar-
kov property (Arnold 1974). 
 Without functional forms for the production 
function in (A1) and the drift and diffusion terms 
in (A2), an explicit solution to the system is not 
possible. However, to show that maximizing a 
system like (A1) subject to (A2) results in optimal 
policies that support the Markov chain model of 
farm size is relatively straightforward, although 
tedious. Of specific interest is the herd size con-
trol variable. If herd size can be shown to be 
Markovian, then the Markov chain model of farm 
size is an appropriate methodology for examining 
structural change and its effect on farm size. 
 To begin, the Hamilton-Jacobi-Bellman (HJB) 
equation of stochastic control for the system (A1) 
subject to (A2) is 
 
(A3) 

 [ ]{ }max0 ( , ) ( ) ,,
t

t nE pq n w n e dt Jn
−ρ= − − + ξx wxx  

 
where ξ(J) is a differential operator representing 
Ito’s lemma applied to J.  ξ(J) is given by 
 
(A4) 
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Substituting the SDEs in (A2) into (A4) where 
appropriate, substituting the result into (A3), pass-
ing the expectation operator through the resulting 
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expression, and canceling dts gives the following 
HJB equation: 
 
(A5) 
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In (A5), rqv is the correlation coefficient between 
the milk production and land value state vari-
ables. 
 Differentiating the right-hand side of (A5) with 
respect to the control variables gives the K + 1 
first-order conditions: 
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The solution to the first-order conditions in (A6) 
can be symbolically expressed as 
 
(A7)
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where α represents a vector of parameters arising 
from the technical coefficients of the production 
function and β represents a vector of parameters 
arising from the production function and volatil-

ity of milk production.7 A set of simultaneous 
solutions to (A7) can be symbolically written as 
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which shows that the optimal policies depend on 
a second partial derivative of the value functional, 
time, and a vector of parameters consisting of the 
producer’s discount rate, output price, input prices, 
technical coefficients from the production func-
tion, and the volatility of milk production. 
 Substituting (A8) into (A5) implies that the HJB 
equation (A5) may be rewritten as 
 
(A9) 
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which is a second-order, nonlinear,8 partial differ-
ential equation (PDE). The boundary condition 
for (A9) is [ ( ) ( ), ( ),TJ q T v T T e v T−ρ, ] =  and the so-
lution can be denoted symbolically as * ( , , )J q v t . 
 Upon arriving at a solution to the PDE (A9) 
subject to the boundary condition, partial deriva-
tives can be computed and substituted where nec-
essary in the solutions to the first-order conditions 
given in (A8). More clearly, 
 
(A10) 
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7 From this point forward, it is assumed that rqv = 0. Milk production 
and land values are likely not correlated, and the assumption simplifies 
the math to some degree. 

8 The equation is nonlinear because σq
2 is a function of n* which itself 

is a function of ∂2J/∂q2. This term is multiplied by ∂2J/∂q2 in the last 
term of (9), implying that (∂2J/∂q2)2 appears in (9). 
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This result follows from the fact that the optimal 
solutions depend upon the partial derivatives of 
the value function, time, and a vector of parame-
ters. Since the optimal J*(⋅) can depend on only 
the state variables and time, partial derivatives of 
J*(⋅) can at most depend on only the state vari-
ables and time. Therefore, the optimal policies 
depend at most on the two state variables, time, 
and the vector of parameters. 
 The most important implication of the result 
presented in (A10) is the following. The dynam-
ics of herd size can be derived by applying Ito’s 
lemma to n* in (A10), giving 
 
(A11) 
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Substituting n* from (A10) into the SDE describ-
ing milk production evolution in (A2), and sub-
stituting the result into (A11), implies that the dy-
namics of herd (farm) size are characterized by 
the first-order SDE, 
 

(A12)  
*

* *

*

( , , ; ) ( , )

( , ) ,

q

q v v

ndn q v t dt q t
q

ndz v t dz
v

⎛ ⎞∂
= µ + σ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
+ σ⎜ ⎟∂⎝ ⎠

β  

 
where 
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A similar representation can be accomplished for 
each of the optimal inputs. However, our primary 
interest is with regard to n*, so no attempt is made 
to derive the SDEs that characterize optimal input 
use dynamics. Arnold (1974) has shown that when 
SDEs like those in (A2) possess the Markov prop-
erty, an equation like (A12) will also possess the 
property. This is because n* depends on state vari-
ables that are Markovian, and therefore the dynam-

ics of farm size (as measured by number of head) 
will inherit the Markov property from those state 
variables. 
 What this all means is that if a producer can be 
characterized as behaving in a manner consistent 
with the stochastic optimal control problem pre-
sented in (A1) subject to (A2), namely, chooses 
inputs and the number of cows to milk consistent 
with the objective of maximizing the dynamic 
value of the farm (and optionally the terminal 
value of farm’s land) and faces uncertainty that is 
Markovian, then the size of the farm, as measured 
by the number of head of cows to milk, is Mark-
ovian as well. 
 In this setting, state transition probabilities are 
necessarily dependent on the state variables de-
scribing the underlying stochastic optimal control 
problem faced by the decision maker.9 Let ( )ij tπ  
denote nonstationary transition probabilities of a 
Markov chain that quantify the time t probability 
that a dairy farm with a herd size of i transitions 
to a herd size of j over one period. In the context 
of the previous control problem, it must be the 
case that ( ) [ ( ), ( )]ij ijt q t v tπ = π , which shows that 
the transition probabilities depend on the two 
state variables describing milk production and 
land values. More generally, πij(t) = πij[s(t)],  where 
s(t) is a vector of state variables that describe the 
firm’s dynamic decision problem. How each of 
the state variables affects the transition probabili-
ties is critical to understanding how structural 
change influences the composition of dairy farms, 
both in terms of the number and size of farms. 
 
 
 

                                                                                    
9 See, for example, Malliaris and Brock (1991) for a more rigorous 

discussion on this point. 
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