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Abstract 

Risk is an inherent feature of agricultural production and marketing and accurate 

measurement of it helps inform more efficient use of resources. This paper examines 

three tail quantile-based risk measures applied to the estimation of extreme 

agricultural financial risk for corn and soybean production in the US: Value at Risk 

(VaR), Expected Shortfall (ES) and Spectral Risk Measures (SRMs). We use Extreme 

Value Theory (EVT) to model the tail returns and present results for these three 

different risk measures using agricultural futures market data. We compare the 

estimated risk measures in terms of their size and precision, and find that they are all 

considerably higher than normal estimates; they are also quite uncertain, and become 

more uncertain as the risks involved become more extreme.  
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1. INTRODUCTION 
 

The inherent variability in agricultural production (weather, pests, animal illness and 

so forth) alongside demand variations (food scares, fads, etc.) make for a marketing 

environment for farmers that is characterised by significant levels of risk (Moschini 

and Hennessy, 2001, Chern and Ricketsen (2003) and Carter and Smith (2007)). A 

natural question then arises - how do you measure the magnitude of risk being faced 

by agents? – and the last decade and a half have witnessed an explosion of research 

on different measures of financial risk, and especially on one particular measure, the 

Value-at-Risk (VaR). This ‘VaR revolution’ began when JP Morgan published its 

famous RiskMetrics model on the web in October 1994. VaR models were first used 

by financial institutions for their own risk management purposes, but have since been 

adopted by many non-financial corporates as well. Amongst their many uses, VaR 

models can be used to determine capital and reserving requirements, establish 

position limits and assess hedging strategies. They can also be used to manage 

cashflow, liquidity and credit risks as well as the market risks for which they were 

first developed. Estimation methods have improved considerably over the years, and 

the properties – and especially the limitations – of the VaR itself have become better 

understood. Various new measures of financial risk have also been proposed and 

these include, most notably, the coherent risk measures proposed by Artzner et alia 

(1999). These risk measures have the highly desirable property of sub-additivity, 

which the VaR lacks.1

                                                 
1 Suppose we let X and Y represent any two portfolios and let 

 Thus, not only have VaR estimation methods improved over 

time, but there have also been improvements in the financial risk measures 

themselves, of which the VaR is but one. 

(.)ρ  be a measure of risk over a given 
forecast horizon. The risk measure (.)ρ  is subadditive if it always satisfies the condition 

)()()( YXYX ρρρ +≤+ . Subadditivity reflects the idea that risks should not increase, and should 
typically decrease, when we put them together, i.e., it reflects the notion that risks should diversify.  
The coherent risk measures are always sub-additive by construction, because sub-additivity is one of 
the axioms of coherence, but the VaR is not coherent and the failure of VaR to be sub-additive leads to 
the VaR having some strange and undesirable properties as a risk measure. See Artzner et al. (1999, p. 
217, Dowd (2005, pp. 31-32)  
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The relevance of these developments to agricultural financial risks is self-

evident. Yet, ironically, to date they have had only a limited impact on the 

agricultural economics and finance literature. Some indication of the current state of 

the art in agricultural financial risk measurement can be obtained from Table 1. This 

lists the main points of 8 different studies on this subject. Most of these studies use 

multivariate parametric approaches to estimate VaR, and these are typically based on 

the assumption that underlying risks factors are multivariate normally distributed. 

Some studies also use historical simulation methods to estimate the VaR. One study 

(Zhang et al. (2007)) uses Monte Carlo methods, and two (Siaplay et al. (2005) and 

Odening and Hinrichs (2003)) include results based on Extreme-Value Theory 

(EVT). It is also noteworthy that all but one of these studies focuses exclusively on 

the VaR risk measure.2

 

 To our knowledge, there are no studies so far of coherent risk 

measures applied to agricultural risk problems.  

Insert Table 1 here 

 

This paper examines three different measures of financial risk applied to 

agricultural risk. The measures examined are the VaR and two members of the family 

of coherent risk measures. The first of the coherent risk measures is the Expected 

Shortfall (ES), which is loosely speaking the average of the ‘tail losses’ or losses 

exceeding the VaR. The ES takes account of the magnitude of losses exceeding the 

VaR. This, and the related fact that it is subadditive, makes the ES a superior risk 

measure to the VaR on a priori grounds. However, both the VaR and ES measures 

depend on the choice of a confidence level that delineates the cutoff to the tail region, 

and there is seldom an ‘obvious’ choice of what the confidence level should be. 

Moreover, the ES has the undesirable property of implying that the user is risk-

                                                 
2 The one exception (Zhang et al., 2007) looks at lower partial moment measures based on the 
downside risk literature (e.g., Fishburn, 1977) rather than the coherent risk measures that have been 
much discussed in the mainstream financial risk literature. The VaR and the ES can be regarded as 
special cases of the lower partial moment measures if the lower partial moment parameter takes the 
values 0 or 1 respectively (see Dowd, 2005, p. 26). 
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neutral, and this sits uncomfortably with the use of such measures by risk-averse 

agents in the first place.3

The other coherent risk measure is a Spectral Risk Measure (SRM) proposed 

by Acerbi (2002, 2004). The distinctive feature of an SRM is that it specifically 

incorporates a user’s degree of risk aversion. Since SRMs are a subset of the family 

of coherent risk measures, they have the attractions of coherent risk measures as well. 

A tractable type of SRM is that based on an exponential risk aversion function, and a 

nice feature of exponential risk aversion function is that the extent of risk aversion 

depends on a single parameter, the coefficient of absolute risk aversion 

 

R . Once a 

user chooses the value of R  that reflects its attitude to risk, it can then obtain an 

‘optimal’ risk measure that directly reflects its degree of risk aversion. So, whereas 

the VaR or ES are contingent on the choice of an arbitrary parameter, the confidence 

level, whose ‘best’ value cannot easily be determined, a spectral-coherent risk 

measure is contingent on a parameter whose ‘best’ value can be selected by the agent 

that uses it.  

Our measurement of the three risk measures is for corn and soybean spot and 

futures contracts as these goods represent an important element of US agricultural 

production: corn due to its role in feed grain production and soybeans for vegetable 

oil production. We analyse the contracts for both long and short positions whose risk 

would be of interest to different possible users such as farmer producers and 

processors.    

The focus of this study is extreme financial risk – the risk associated with the 

prospect of low probability, high impact losses. There has been considerable interest 

in extreme risks over the last decade. The literature on extremes tells us that extremes 

should be modelled separately from the rest of the distribution using the distributions 

implied by Extreme Value (EV) theory,4

                                                 
3 For its part, the VaR is even worse, as it implies that a user who chooses to use the VaR as a risk 
measure must be highly risk-loving (see Cotter and Dowd, 2007, p. 3472).  

 and should not be modelled by fitting full 

distributions to the data in an ad hoc way (e.g., such as assuming Gaussianity). In 

4 For more on EVT, see, e.g., Embrechts et al.,1997, or Beirlant et al., 2004. Note that tail risk 
measures are underestimated using Gaussianity and this estimation bias deteriorates as one moves 
further out into the tail (Cotter, 2007). 
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essence, it suggests that we can either model the extremes themselves using one of 

the Generalised EV distributions implied by the Extreme Value Theorem or we can 

model the exceedances over a high threshold using a Generalised Pareto Distribution 

(GPD; see, e.g., Embrechts et alia (1997)). This latter approach is often referred to as 

the Peaks-Over-Threshold approach. We choose the latter because it (typically) 

involves one less parameter and because it fits more easily with the likelihood that 

extreme losses occur in clusters. The application of the GPD can be justified by 

theory that tells us that the tail observations should follow a GPD in the asymptotic 

limit as the threshold gets bigger. Once the GDP curve is fitted to the data, it can then 

be extrapolated to give estimates of any extreme quantiles or tail probabilities we 

choose.  

Accordingly, in this paper, we use the POT approach to estimate and compare 

the extreme VaRs, ESs and SRMs for corn and soybean contracts. Bearing in mind 

that the usefulness of any estimates of financial risk measures also depends crucially 

on their precision, we also examine alternative methods of estimating their precision.5

 This paper is organised as follows. Section 2 reviews the risk measures to be 

examined. Section 3 reviews the Peaks-Over-Threshold (POT) approach and section 

4 details the POT-based risk measures. Section 5 introduces the spot and futures corn 

and soybean data used in our empirical work and provides some preliminary data 

analysis. Section 6 describes the bootstrap procedure used to derive the precision 

metrics used in the paper. Section 7 then estimates VaR and ES, and section 8 

estimates the SRMs. Each of these sections also examines the precision of these 

estimated risk measures. Section 9 concludes.  

 

Given the heavy reliance of Gaussianity in the literature, we also produce estimates of 

risk measures using Gaussianity. 

 
                                                 

5 As noted already in the text, two of the studies listed in Table 1 present results based on EVT. Of 
these, Siaplay et alia (2005) report EV estimates of VaR in a single table obtained using the EV 
function in Palisade Corporation’s ‘@Risk’ package, but provide no EV analysis as such. We also note 
there that this function only allows the user to model a Gumbel EV distribution, and this distribution is 
not compatible with heavy-tailed returns. Odening and Hinrichs (2002) provide an analysis based on 
Generalised EV theory, but they report rather unstable estimates of the tail index parameter – a 
common problem in this area - and this makes their results unreliable.  
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2. MEASURES OF FINANCIAL RISK 

Suppose X is a realised random loss variable – a variable that assigns loss outcomes a 

positive sign and profit outcomes a negative one - for a commodity over a given 

horizon. If the confidence level is α , the VaR at this confidence level is: 

 

                                                         αα qVaR =                                                          (1) 

 

where the term αq  is the α -quantile of the loss distribution. For any given horizon, 

the VaR is defined in terms of its conditioning parameter, the confidence level, which 

is arbitrarily specified by the user.  Viewed as a function of the quantiles of the loss 

distribution, it is useful to note here that the VaR places all its weight on a single 

quantile that corresponds to the chosen confidence level and places no weight on any 

others. This implies that the user only ‘cares’ about a single loss quantile, and is not 

concerned about higher losses, and it is this rather strange property that causes the 

VaR risk measure to be non-subadditive (Acerbi, 2004).   

The second measure, the ES, gives equal weight to each of the worst α−1  of 

losses and no weight to any other observations. The ES is superior to the VaR in a 

number of respects (e.g., it is subadditive and coherent and because takes account of 

losses beyond the VaR quantile). However, the ES is specified in terms of the same 

conditioning parameter as the VaR and, as with the VaR, there is generally little to 

tell us what value this parameter should take. 

Our third measure is the Spectral Risk Measure (SRM). Following Acerbi 

(2002), consider a risk measure φM  defined by: 

 

                                              ∫=
1

0

)( dppqM pφφ                  (3) 

 



 
 
 
 

 7 

where pq  is the p loss quantile, )( pφ  is a weighting function defined over p, the 

cumulative probabilities in the range between 0 and 1. Borrowing from Acerbi (2004, 

proposition 3.4), the risk measure φM  is coherent if and only if )( pφ  satisfies the 

following properties: 

• Positivity: 0)( ≥pφ , i.e., weights are always non-negative. 

• Normalisation: ∫ =
1

0

1)( dppφ , i.e., weights sum to one.  

• Increasingness: 0)( ≥′ pφ , i.e., higher losses have weights that are higher than 

or equal to those of smaller losses. 

We now need to specify a suitable weighting (or risk-aversion) function and a 

reasonable choice is the exponential risk-aversion function: 

 

                                               
(1 )e( )

1

R p

R

Rp
e

ϕ
− −

−=
−

                                                    (4) 

 

where R>0 is the coefficient of absolute risk aversion. This weighting/risk-aversion 

attaches higher weights to larger losses, and, moreover, the weights rise more rapidly 

as the user becomes more risk-averse.  

The value of the risk measure can then be obtained by substituting (4) into (3), 

viz.: 

 

    
1 1(1 )

0 0

e e
1 1

R p R
Rp

p pR R

R RM q dp e q dp
e eϕ

− − −

− −= =
− −∫ ∫                    (5) 
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3. THE PEAKS OVER THRESHOLD (GENERALISED PARETO) 

APPROACH 

We model the agricultural tail risks using a Peaks over Threshold (POT) approach 

which focuses on the realisations of a random variable X over a high tail threshold u. 

More particularly, if X has the distribution function F(x), we are interested in the 

distribution function )(xFu  of exceedances of X over a high tail threshold u: 

 

)(1
)()(}{)(

uF
uFuxFuXxuXPxFu −

−+
=>≤−=                  (6) 

 

As u gets large, the distribution of exceedences tends to a Generalized Pareto 

Distribution (GPD): 

 

                 




−−
+−

=
−

)/exp(1
)/1(1

)(
/1

, β
βξ ξ

βξ x
x

xG if   
0
0

<
≥

ξ
ξ

                      (7) 

 

where  





−
∞

∈
]/,0[

),0[
ξβ

x     if    
0
0

<
≥

ξ
ξ

 

 

and the shape ξ  and scale β >0 parameters are estimated conditional on the threshold 

u (Balkema and de Haan, 1974; Embrechts et al., 1997, pp. 162-164).  En passant, 

note that the shape parameter ξ sometimes appears in GPD discussions couched in 

terms of its inverse, a tail index parameter α given by α = 1/ξ.    

 The behavior of the GPD tail depends on the values of these parameters, and 

the shape parameter is especially important. A negative ξ  is associated with very 

thin-tailed distributions that are rarely of relevance to financial data, and a zero ξ  is 

associated with thin tailed distributions such as the Gaussian, but the most relevant 

for our purposes are heavy-tailed distributions associated with ξ>0. The tails of such 



 
 
 
 

 9 

distributions decay slowly and follow a heavy tailed ‘power law’ function.  Moreover 

the number of finite moments is determined by the value of ξ (or α): if ξ ≤ 0.5 (or, 

equivalently, α ≥2), we have infinite second and higher moments; if ξ ≤ 0.25 (or α 

≥4), we have infinite fourth and higher moments, and so forth. α  therefore indicates 

the number of finite moments. Evidence generally suggests that the second moment is 

probably finite, but the fourth moment is more problematic (see, e.g., Loretan and 

Phillips,1994). 

 The values of the GPD parameters can be estimated by Maximum Likelihood 

(ML) methods using suitable (e.g., numerical optimization) methods. The log-

likelihood function of the GPD is:  

 

                         ∑
=

++−−=
n

i
ixnl

1

)/1ln()/11()(ln(),( βξξββξ        for ξ≠0   (8) 

                                         ∑
=

−−−=
n

i
ixnl

1

1)(ln()( βββ               for ξ=0           (9) 

 

where in both cases xi satisfies the constraints specified above for x.  

 

 

4. FORMULAS FOR RISK MEASURES UNDER THE POT APPROACH 

Assuming that u is sufficiently high, the distribution function for exceedances is 

given by:  

 

                                        
ξ

β
ξ

1

11)(

−








 −
+−=

ux
n

N
xF u

u                          (10) 

 

where n is the sample size and uN  is the number of observations in excess of the 

threshold (Embrechts et al.,1997, p. 354). The pth quantile of the return distribution  - 
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which is also the VaR at the (high) confidence level p – can then be obtained by 

inverting the distribution function, viz.: 

 

                                    












−







+==

−

1
ξ

ξ
β p

N
nuVaRq

u
pp                                  (11) 

 

The ES is then given by: 

 

                                             =pES
ξ
ξβ

ξ −
−

+
− 11

uqp                                     (12) 

 

To obtain our SRM, we now substitute (11) into (5) to get: 

 

           dpp
N
nu

eR
edpXqpM

u
R

Rp

p ∫∫ 























−







+

−
==

−

−

−−1

0 /1

/)1(1

0
1

)1(
)()(

ξ

φ ξ
βφ          (13) 

 

 Having obtained the risk-measure formulas, estimates of the risk measures 

themselves are then obtained by estimating/choosing the relevant parameters and 

plugging these into the appropriate (i.e., (11) for the VaR, (12) for the ES, and (13) 

for the SRM). This is straightforward for the VaR and the ES; however, for spectral 

risk measures, we need to use a suitable numerical integration method (e.g., a 

trapezoidal rule, Simpson’s rule, etc.: see Miranda and Fackler, 2002, or Cotter and 

Dowd, 2006, for further details). 

 

5. DATA AND PRELIMINARY ANALYSIS 

Our data set consists of weekly logarithmic price changes for Corn and Soybean 

contracts traded on the CBOT between January 1979 and December 2006 totalling 

1461 observations.  For each product there are 8 series analysed: 1 futures and 7 spot 

across 7 different geographical areas. We examine the tails of both long and short 
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positions for each series, thus giving us a total of 8 2 2 32× × =  cases in total.  We 

choose these particular crops for their importance in the US agricultural sector. Corn 

is the most widely produced feed grain in the US and accounts for 90% of the total 

value of feed grains produced. Approximately 80 million acres are planted to corn 

with most being in the heartland states. Illinois is the largest producer along with 

Iowa, hence the focus on the former for this analysis. Soybeans are also selected as 

the US is the world's largest producer and exporter of them and approximately 2.5 

billion bushels were produced in 20076

 As a preliminary, we illustrate some indicative time series properties in 

Figure 1 and Table 2. The mean returns are near zero for both spot and futures 

contacts, and the corresponding standard deviations suggest weekly volatilities in 

excess of 3% for both sets of contracts.  The series are mostly negative skewed and 

always have excess kurtosis, and Jarque-Bera results indicate that normality is always 

rejected. 

. Illinois is again a major producer and is 

second only to Iowa in output terms. Soybeans are used for vegetable oil production 

and the meal for animal feed.  Thus, we believe our choice of crop and state captures 

significant agricultural activity and thus could be viewed as suitably representative of 

arable production in the US albeit with a constrained focus. 

 

Insert Figure 1 here 

Insert Table 2 here 

 

 Despite the fact that normality is rejected so strongly, it is useful to know 

what the risk measures would be under the counterfactual and heavily used 

assumption that returns are normal. These are reported in Table 3, and we will 

comment on these later when presenting the POT estimates of these risk measures.  

 

Insert Table 3 

                                                 
6 Data are drawn from the National Agricultural Statistics Service (NASS) of the USDA website at 
http://www.nass.usda.gov/ 
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 Figure 2 shows QQ plots for these series’ empirical return distributions 

relative to a normal (or Gaussian) distribution. If the normal distribution is an 

adequate fit, then the QQ plot should be approximately a straight line. However, in 

each case, we find that the QQ plot is approximately straight only in the central 

region, and that the tails show steeper slopes than the central observations: this 

indicates that the tails exhibit heavier kurtosis than the normal distribution, and is 

consistent with the results of Table 2. 

 

Insert Figure 2 here 

 

 In addition, the points where the QQ plots change shape provides us with 

natural estimates of tail thresholds, and these implied thresholds are also consistent 

with the tail index plots – plots of the estimated tail index α and its 95% confidence 

interval against the number of exceedances – shown in Figure 3. The number of 

exceedances reflects the choice of threshold, a smaller number reflecting a higher 

threshold. In each case the estimated tail index is stable over a wide range of 

exceedance numbers (or threshold size, if you prefer), and this tells us that the 

estimated indices are stable relative to the thresholds selected.  

  

Insert Figure 3 here 

 

 The approach taken here focuses on both short and long positions. The 

rationale for this is to reflect the various agents that operate in the supply chain for 

agricultural commodities. At one end, the farmer faces price risk through production 

and thus will be interested in short positions. Equally, processors (and possibly 

retailers if the product can be sold without much processing such as potatoes for 

example) are concerned about the price of their inputs rising and will tend to take 

long positions in the futures market. Finally, there are also merchants who both buy 

and sell the commodities and potentially face input and output price risk and thus 
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could take a mixed strategy approach to trading by going both short and long 

depending on their circumstances. 

We now fit the distributions of exceedances and ML estimates of the GPD 

parameters are given in Table 4 for both long and short trading positions. The Table 

gives the assumed thresholds u, the associated numbers of exceedances (Nu) and the 

observed exceedance probabilities (prob). Also included and of most interest for the 

risk measures are the tail indices, ξ, and the scale parameter, β.  The tail indices are 

generally positive (though not statistically significant) for the spot and futures 

contracts, and the scale parameters vary around 2. The numbers and probabilities of 

exceedances vary somewhat, but all confirm that the chosen thresholds are in the 

stable tail-index regions identified earlier. 

 

Insert Table 4 here 

 

 To check that the GPD provides an adequate fit, Figure 4 shows empirical 

exceedances fitted to the GPDs based on the parameter estimates given in Table 1, 

and the results confirm that the GPD provides a good fit in all cases.  

 

Insert Figure 4 here 

 

 

6. BOOTSTRAP ALGORITHM 

The estimates of standard errors and confidence intervals reported in this paper were 

obtained using a semi-parametric bootstrap set out by Cotter and Dowd (2006). To 

implement this procedure, we begin by taking 5000 bootstrap resamples, each of 

which consists of n=1492 uniform random variables. Each resample is then sorted 

into ascending order so that its relative frequencies can be considered ‘as if’ they 

were a set of resampled cumulative probabilities. For example, for the jth resample, 

these relative frequencies are as j
n

jj ppp ,...,, 21 , where j
i

j
i pp 1+≤ . We then use the 

fitted GPD (i.e., (11)) to obtain each element of the jth resample set of losses. Thus, if 
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j
ip  is the ith cumulative probability in the jth resample, then j

iq , the ith highest loss in 

the jth resample, can be obtained from  

 

                                    












−









+=

−

1ˆˆ
ˆ

ˆ
ξ̂

ξ
β j

i
u

j
i p

N
nuq                       (14) 

 

where (14) is a version of (11) in which the ‘^’ refer to the sample-based estimates of 

the GPD parameters. Since the VaRs are quantiles, (14) gives us direct resample 

estimates of the VaRs. Resample estimates of the ES and SRM are then obtained 

using (12) and (13) respectively (with pq  replaced by j
iq  and parameters replaced by 

their ‘^’ estimates). For each resample, the standard errors and confidence interval 

were obtained from the set of resample estimates of the appropriate risk measures.  

 

 

7. ESTIMATES OF VALUE AT RISK AND EXPECTED SHORTFALL 

GPD estimates of VaR and ES are given in Table 5 for confidence levels of 99%, 

99.5% and 99.9%: Table 5a gives the results for corn contracts and Table 5b gives the 

results for soybean contracts. To illustrate, the VaR of 9.989 at the 99% level implies 

that there is a 1% chance of having losses greater than 9.989% of the value of the 

corn Region 1 contract for a long trading position.  These show, as we might expect, 

that estimated risk measures rise with the confidence level, and that the estimated 

VaRs are notably larger than the estimated ESs. There are no great differences 

between the different contracts or between the corn and soybean estimates of the risk 

measures, but the short and long results can be somewhat different from each other. It 

is also noteworthy that the estimated risk measures are usually much higher than the 

Gaussian-based estimates in Table 3 and the divergence increases as one moves to 

more extreme probability levels. This suggests that extreme risks are large, and that 

assuming Gaussianity in these circumstances can lead to very considerable under-

estimates of our risk measures. 
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 The Table also reports the bootstrapped standard errors of the estimated risk 

measures, and these rise considerably with the confidence level: this indicates that 

estimated risk measures become considerably less precise as the confidence level 

rises. This is a well-known phenomenon, and reflects the fact that as the confidence 

level rises, we are dealing with an increasingly extreme tail measured with fewer and 

fewer observations.7

 

  

Insert Table 5 here 

 

 Table 6 shows bootstrapped estimates of the standardized 90% confidence 

intervals for the VaR and ES: these are estimates of the 90% confidence intervals 

divided by the estimated mean risk measure, and are easier to interpret than 

conventional confidence intervals. So, for example, the first two results in the first 

row of Table 6a tell us that the 90% confidence interval for the region 1 spot VaR 

varies from 89.3% to 111.7% of the mean VaR, and so forth. Two features of these 

results stand out:  

• The standardized confidence intervals for the ES are generally a little 

narrower than those for the VaR: this confirms that in relative terms, estimates 

of the ES are more precise than estimates of the VaR. 

• The confidence intervals are fairly symmetric for the risk measures predicated 

on the 99% confidence level, but become asymmetric as the confidence level 

rises and, in particular, we see that the right bound is further from the mean 

risk measure than the left bound. To give an example, at the 99.9% confidence 

level, the standardized confidence interval spans the range from 80% to 

125.5% of the mean risk measure (i.e., down 20%, but up 25.5%). This 

finding is also to be expected and again reflects the fact that as we move 

                                                 
7 Interestingly, we also see that the standard errors are usually only a little larger for the ESs than for 
the VaRs: these indicate that ES estimates are a little less precise than VaR estimates in absolute terms. 
However, the ratios of estimated risk measures to standard errors are often lower for the ESs than for 
VaRs, so in relative terms (i.e., taking account of the sizes of the two risk measures), it is often the case 
that the ES is more precisely estimated than the VaR. 
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further out into the extreme tail, we run into fewer observations and our 

uncertainty increases further.  

 

Insert Table 6 here 

 

 

8. ESTIMATES OF SPECTRAL RISK MEASURES 

We now turn to estimates of spectral risk measures. As we have discussed already, 

these risk measures make use of the coefficient of absolute risk aversion R  rather 

than the confidence level as their conditioning parameter. The value of this 

coefficient depends on the user’s attitude to risk, and can in principle be any positive 

number (assuming that the user is in fact risk-averse). However, in the present EV 

context it only makes sense to work with fairly high values of R : the higher is R , the 

more we are concerned about very high (i.e., extreme) losses relative to more 

moderate ones. A concern with extremes therefore suggests a high value of R . 

Accordingly, we consider here values of R  equal to 20, 100 and 200.  

 Once a value of R  has been chosen, we can estimate the value of the integral 

(13) using numerical integration. The idea behind this is to discretize the continuous 

variable p into a large number N of discrete ‘slices’, where the discrete approximation 

gets better as N gets larger. We then choose a suitable numerical integration method, 

and the ones we considered were the trapezoidal rule, Simpson’s rule, and numerical 

integration procedures using quasi-Monte Carlo methods based on Niederreiter and 

Weyl algorithms respectively.8

 However, we first need to evaluate the accuracy of these methods. To help us 

do so, Table 7 gives estimates of the approximation errors generated by these 

alternative numerical integration methods based on alternative values of N and a 

  

                                                 
8 The choice of numerical integration method was also influenced by the need to have fast integration 
algorithms for use in our bootstrap algorithms. We used the Miranda-Fackler (2002) CompEcon 
functions, which are very fast indeed.  
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plausible set of benchmark parameters.9

 

 These results indicate that all methods have a 

negative bias for relatively small values of N, but they also indicate that the bias 

disappears as N gets large. In addition, they suggest that for high N, the trapezoidal 

method is at least as accurate as any of the others.  

Insert Table 7 here 

 

 For the remaining estimations, we selected a benchmark method consisting of 

the trapezoidal rule calibrated with N=1 million.10

 Estimates of SRMs and their bootstrapped standard errors and standardised 

90% confidence bounds are given in Table 8. In many respects these results are 

comparable to those obtained earlier for the VaR and ES, but with 

  

R  playing the 

same role as the earlier confidence level. In particular, we see that: 

• Estimated SRMs are considerably higher than the normal estimates in Table 3. 

• Estimated SRMs rise notably as R  increases. 

• Estimated SEs and the widths of confidence intervals rise as R  increases; we 

also see some asymmetry in the confidence intervals for very high values of 

R , again with the right bound being a little further away from the mean than 

the left bound.11

• Differences across contract types are fairly small, and the only noteworthy 

difference between the corn and soybean results is that the latter have more 

pronounced differences between long and short positions. 

 

 

Insert Table 8 here 

                                                 
9 These benchmark parameters were the mean parameters in Table 2 for the case where 100=R . 
10 There is of course a tradeoff between calculation time and accuracy, but the choice of N=1 million 
gives us results that are accurate to within half a percentage point in the illustrative case examined in 
Table 7, and this is accurate enough for our purposes.   
11 This phenomenon was also observed by Cotter and Dowd (2006), and the explanation is that as R  
increases, an SRM estimator places more weight on a smaller number of extreme observations, and 
therefore operates with a smaller effective sample size. For very high values of R , we would then get 
right- and left-asymmetry reflecting the greater paucity of observations on the right-hand side.  
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9. CONCLUSIONS 

Effective and accurate measurement of risk in agricultural markets is central to 

informing how best to design strategies and instruments aimed at helping farmers 

manage the risks they face. Toward this end, this paper applies the Peaks-Over-

Threshold version of Extreme Value Theory to estimate the extreme financial risk 

measures for a selection of agricultural contracts. The risk measures considered were 

the Value at Risk (VaR), the Expected Shortfall (ES), and the Spectral Risk Measure 

(SRM) based on an exponential risk-aversion function for a given coefficient of 

absolute risk aversion. We examine the properties of these risk measures and suggest 

that SRM is to be preferred to the ES, which in turn is to be preferred to the VaR. We 

also estimate both the risk measures themselves and some precision metrics obtained 

using a parametric bootstrap procedure. Our empirical results suggest three main 

conclusions, and this is the case for all three risk measures. First, we find that the 

estimated risk measures are all considerably higher than the estimates we would have 

obtained under Gaussianity. This suggests that Gaussianity can lead to major under-

estimates of extreme risks. Second, we find that estimated risk measures are quite 

uncertain, as judged by the estimated standard errors and confidence intervals. This is 

to be expected, as EV problems almost by definition involve small numbers of 

extreme observations. Third, we find that the degree of uncertainty associated with 

our estimated risk measures increases as we go further out into the tail. This finding 

also makes intuitive sense: the further we go into the tail, the more sparse our 

observations become, and the more uncertain any estimates will be. In a nutshell, 

extreme risk measures are large, but also uncertain.  
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Figure 1a: Time Series Plots of Weekly Series: Corn 
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Notes: Plots show weekly % returns for each contract over the period January 1979 to December 2006. The 
sample size is 1461. 
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Figure 1b: Time Series Plots of Weekly Series: Soybeans 
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Notes: Plots show weekly % returns for each contract over the period January 1979 to December 2006. The 
sample size is 1461. 
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Figure 2a: QQ Plots for Corn Spot and Futures Returns 
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Notes: Plots show empirical quantiles of return series against those of a normal distribution. Based on 1461 
weekly observations over the period January 1979 to December 2006. 
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 Figure 2b: QQ Plots for Soybean Spot and Futures Returns  
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Notes: Plots show empirical quantiles of return series against those of a normal distribution. Based on 1461 
weekly observations over the period January 1979 to December 2006. 
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Figure 3a: Tail Index Plots as Functions of Numbers of Exceedances: Corn Spot and 
Futures 
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Notes: Plots show tail index (ξ ) estimates and 95% confidence bands are presented as a function of threshold 
size and number of exceedences. Based on 1461 weekly observations over the period January 1979 to 
December 2006. 
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Figure 3b: Tail Index Plots as Functions of Numbers of Exceedances: Soybean Spot 
and Futures 
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Notes: Plots show tail index (ξ ) estimates and 95% confidence bands are presented as a function of threshold 
size and number of exceedences. Based on 1461 weekly observations over the period January 1979 to 
December 2006. 
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Figure 4a: Exceedances Fitted to GPD: Corn Spot and Futures 
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Notes: Plots show empirical exceedances against GPD-fitted exceedance curves. Based on 1461 weekly 
observations over the period January 1979 to December 2006. 
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Figure 4b: Exceedances Fitted to GPD: Soybean Spot and Futures 
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Notes: Plots show empirical exceedances against GPD-fitted exceedance curves. Based on 1461 weekly 
observations over the period January 1979 to December 2006. 

 



TABLES 
 
 

Table 1: Existing Studies of Measures of Agricultural Financial Risk 
 

Study Application Data Estimation method 
Manfredo and 

Leuthold (2001) 
US cattle market Weekly cash prices Parametric methods, including RiskMetrics, and Garch and 

implied volatility estimates of volatility. 
Historical simulation 

Odening and Mußhoff 
(2002) 

German hog market Weekly prices Multivariate parametric methods including EWM A and 
GARCH volatility models. Historical simulation  

Odening and Hinrichs 
(2003) 

German hogs and farrows. Focus on 
cashflow-at-risk rather than VaR per se 

Weekly prices. Parametric methods with GARCH, square-root rule and 
Drost-Nijman formula for volatilities. Historical simulation 

and Generalized Extreme Value approaches  
Pritchett et alia (2004) Impact of alternative risk management 

strategies in US agriculture 
Annual Unspecified 

Dawson and White 
(2005)  

A typical UK arable farm Weekly cash prices Multivariate parametric methods, including RiskMetrics 
and GARCH volatility models 

Katchova and Barry 
(2005) 

Portfolio of Illinois farms Annual 
1995-2002 

CreditMetrics and KMV models of credit quality used to 
estimate default VaRs 

Siaplay et alia (2005) US turkey market, with the emphasis on 
food safety 

Monthly prices and 
costs 

Various parametric methods (including  Extreme Value 
distribution) estimated using @Risk software 

Wilson et alia (2005)  US bakeries Monthly Monte Carlo 
Zhang et alia (2007) Applies downside risk management 

techniques to investigate how US Govt. 
policies affect a typical farm’s financial 

risk management  

Cotton in Colquitt 
County GA 

Daily futures prices 

Monte Carlo simulation, conditional kernel approach, 
copula methods 



 
Table 2: Summary Statistics for Weekly Series 

 
 Mean Std Dev Skewness Kurtosis JB P-value 
 Corn 

Reg 1 Spot 0.033 3.495 -0.331 6.557 0 
Reg 2 Spot 0.033 3.554 -0.342 7.022 0 
Reg 3 Spot 0.034 3.402 -0.347 6.942 0 
Reg 4 Spot 0.033 3.585 -0.153 8.540 0 
Reg 5 Spot 0.029 3.512 -0.109 5.491 0 
Reg 6 Spot 0.030 3.497 -0.279 6.362 0 
Reg 7 Spot 0.029 3.485 -0.219 5.698 0 

Futures 0.032 3.205 0.005 6.857 0 
 Soybean 

Reg 1 Spot -0.001 3.224 -0.640 8.379 0 
Reg 2 Spot 0.000 3.166 -0.577 7.435 0 
Reg 3 Spot -0.001 3.210 -0.597 8.488 0 
Reg 4 Spot -0.001 3.169 -0.571 7.058 0 
Reg 5 Spot -0.001 3.272 -0.393 7.849 0 
Reg 6 Spot 0.000 3.161 -0.516 7.092 0 
Reg 7 Spot -0.001 3.127 -0.383 5.404 0 

Futures -0.001 3.100 -0.444 6.359 0 

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the 
period January 1979 through December 2006. Mean and standard deviation are in percentage form. ‘JB 
P-value’ is the P-value of the Jarque-Bera normality test.  
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Table 3: Estimated Risk Measures Under the Assumption that Returns are Normal 
 

 VaR at α =  ES at α =  SRM at γ ARA= 
 0.99 0.995 0.999 0.99 0.995 0.999 20 100 200 
 Corn 

Reg 1 Spot 8.098 8.970 10.767 9.282 10.074 11.735 6.512 8.788 9.624 
Reg 2 Spot 8.235 9.122 10.950 9.439 10.245 11.934 6.621 8.936 9.786 
Reg 3 Spot 7.880 8.729 10.479 9.033 9.804 11.421 6.340 8.556 9.370 
Reg 4 Spot 8.307 9.201 11.046 9.522 10.335 12.038 6.678 9.014 9.871 
Reg 5 Spot 8.141 9.017 10.824 9.331 10.128 11.796 6.539 8.827 9.666 
Reg 6 Spot 8.105 8.978 10.777 9.290 10.083 11.745 6.512 8.790 9.626 
Reg 7 Spot 8.078 8.948 10.741 9.259 10.049 11.705 6.489 8.759 9.592 

Futures 7.424 8.224 9.872 8.510 9.237 10.760 5.973 8.061 8.827 
 Soybeans 

Reg 1 Spot 7.501 8.306 9.964 8.594 9.325 10.857 5.975 8.075 8.846 
Reg 2 Spot 7.365 8.155 9.784 8.438 9.156 10.660 5.869 7.931 8.688 
Reg 3 Spot 7.469 8.269 9.921 8.556 9.284 10.809 5.949 8.040 8.808 
Reg 4 Spot 7.373 8.164 9.794 8.447 9.166 10.671 5.873 7.938 8.695 
Reg 5 Spot 7.613 8.429 10.112 8.722 9.464 11.018 6.064 8.196 8.978 
Reg 6 Spot 7.354 8.142 9.768 8.425 9.141 10.643 5.859 7.919 8.674 
Reg 7 Spot 7.275 8.055 9.663 8.334 9.043 10.529 5.796 7.833 8.581 

Futures 7.213 7.986 9.581 8.263 8.966 10.439 5.745 7.765 8.506 

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period 
January 1979 through December 2006. Estimates of SRMs obtained using the CompEcon software of Miranda 
and Fackler (2002) written in MATLAB using the trapezoidal rule and N=1m ‘slices’. 
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Table 4: GPD Parameters for Weekly Series 

 
 Long Position Short Position 
 u prob Nu ξ̂  (tail) β̂  (scale) u prob Nu ξ̂  (tail) β̂  (scale) 

Corn 
Reg 1 Spot 3.269 0.862 201 0.036 2.445 3.153 0.863 200 0.089 1.978 

    (0.068) (0.239)    (0.078) (0.208) 
Reg 2 Spot 3.957 0.897 150 0.073 2.478 3.793 0.897 150 0.207 1.813 

    (0.085) (0.292)    (0.113) (0.250) 
Reg 3 Spot 3.052 0.863 200 0.084 2.320 3.697 (0.897 150 0.167 1.786 

    (0.078) (0.243)    (0.106) (0.238) 
Reg 4 Spot 3.238 0.863 200 0.118 2.293 3.748 0.897 150 0.135 2.080 

    (0.068) (0.239)    (0.078) (0.208) 
Reg 5 Spot 3.223 0.856 210 0.016 2.357 3.031 0.849 220 0.056 2.165 

    (0.073) (0.237)    (0.080) (0.226) 
Reg 6 Spot 2.993 0.843 230 0.120 2.104 3.822 0.897 150 0.091 2.037 

    (0.080) (0.217)    (0.098) (0.260) 
Reg 7 Spot 3.685 0.884 170 0.012 2.454 3.048 0.843 230 0.130 1.828 

    (0.076) (0.264)    (0.087) (0.200) 
Futures 3.484 0.897 150 0.132 1.781 3.256 0.877 180 0.033 2.162 

    (0.084) (0.208)    (0.078) (0.234) 
Soybean 

Reg 1 Spot 3.550 0.897 150 0.229 1.875 3.377 0.890 160 0.040 1.843 
    (0.109) (0.254)    (0.082) (0.210) 

Reg 2 Spot 3.008 0.870 190 0.177 1.921 3.308 0.890 160 0.022 1.863 
    (0.090) (0.221)    (0.078) (0.207) 

Reg 3 Spot 3.462 0.897 150 0.223 1.921 2.951 0.870 190 0.083 1.795 
    (0.102) (0.248)    (0.078) (0.191) 

Reg 4 Spot 3.043 0.870 190 0.178 1.903 3.494 0.897 150 0.028 1.801 
    (0.109) (0.254)    (0.082) (0.210) 

Reg 5 Spot 3.506 0.897 150 0.205 2.021 3.525 0.897 150 0.116 1.752 
    (0.107) (0.270)    (0.083) (0.203) 

Reg 6 Spot 3.870 0.911 130 0.179 1.958 3.433 0.897 150 0.075 1.732 
    (0.109) (0.272)    (0.095) (0.216) 

Reg 7 Spot 3.580 0.897 150 0.052 2.200 3.533 0.897 150 -0.023 1.856 
    (0.100) (0.283)    (0.068) (0.197) 

Futures 2.821 0.863 200 0.252 1.627 2.934 0.863 200 0.000 1.842 
    (0.095) (0.191)    (0.007) (0.131) 

Notes: The Table presents estimates of the GPD parameters for long and short positions in spot and futures corn and 
soybean contracts. The sample size n is 1462, the threshold is u, the probability of an observation in excess of u is 
prob, the number of exceedences in excess of u is Nu, the estimated tail parameter is ξ̂  and the estimated scale 

parameter is β̂ . The numbers in brackets are the estimated standard errors of the parameters concerned. The 
thresholds u are chosen as the approximate points where the QQ plots for each series change slope.  
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Table 5a: GPD Values-at-Risk and Expected Shortfalls: Corn Spot and Futures Contracts 
 

 Long positions Short positions 
 α =0.99 α =0.995 α =0.999 α =0.99 α =0.995 α =0.999 
 Values-at-Risk 

Region 1 spot 9.989 11.875 16.440 8.979 10.764 15.359 
SE 0.678 1.008 2.304 0.629 0.975 2.458 

Region 2 spot 10.246 12.334 17.610 7.327 8.752 12.969 
SE 0.741 1.133 2.772 0.482 0.819 2.595 

Region 3 spot 9.839 11.902 17.181 8.779 10.716 16.178 
SE 0.729 1.124 2.808 0.664 1.093 3.199 

Region 4 spot 10.265 12.520 18.526 9.438 11.508 17.130 
SE 0.787 1.247 3.320 0.718 1.153 3.170 

Region 5 spot 9.640 11.354 15.409 9.370 11.151 15.563 
SE 0.621 0.909 2.004 0.636 0.960 2.276 

Region 6 spot 9.865 11.981 17.632 9.105 10.906 15.554 
SE 0.738 1.171 3.131 0.635 0.985 2.492 

Region 7 spot 9.795 11.554 15.696 9.106 11.003 16.127 
SE 0.638 0.931 2.038 0.659 1.054 2.872 

Futures 8.338 10.096 14.855 8.915 10.562 14.534 
SE 0.610 0.978 2.674 0.593 0.879 1.998 

 Expected Shortfalls 
Region 1 spot 12.777 14.733 19.468 11.720 13.679 18.723 

SE 0.703 1.045 2.390 0.691 1.070 2.698 
Region 2 spot 13.414 15.667 21.359 9.739 11.537 16.855 

SE 0.799 1.222 2.991 0.607 1.033 3.272 
Region 3 spot 12.995 15.247 21.010 11.942 14.267 20.824 

SE 0.796 1.227 3.066 0.797 1.313 3.841 
Region 4 spot 13.805 16.362 23.171 12.731 15.124 21.623 

SE 0.892 1.414 3.764 0.830 1.333 3.665 
Region 5 spot 12.139 13.882 18.002 12.039 13.926 18.600 

SE 0.631 0.923 2.036 0.673 1.017 2.410 
Region 6 spot 13.193 15.598 22.019 11.874 13.856 18.969 

SE 0.839 1.331 3.558 0.698 1.083 2.741 
Region 7 spot 12.353 14.134 18.325 12.112 14.293 20.182 

SE 0.646 0.942 2.063 0.758 1.212 3.301 
Futures 11.129 13.154 18.636 11.344 13.047 17.155 

SE 0.703 1.126 3.081 0.613 0.909 2.067 

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period 
January 1979 through December 2006. α  indicates the confidence level and SE indicates the standard error 
of the risk measure in the box above. Standard errors are based on 5000 semi-parametric bootstrap resamples. 
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Table 5b: GPD Values-at-Risk and Expected Shortfalls: Soybean Spot and Futures 
Contracts 

 
 Long positions Short positions 
 α =0.99 α =0.995 α =0.999 α =0.99 α =0.995 α =0.999 
 Values-at-Risk 

Region 1 spot 9.317 11.717 19.006 8.005 9.430 12.897 
SE 0.805 1.393 4.611 0.512 0.763 1.757 

Region 2 spot 9.243 11.474 17.841 7.885 9.257 12.523 
SE 0.762 1.265 3.775 0.496 0.729 1.624 

Region 3 spot 9.326 11.746 19.042 8.081 9.666 13.716 
SE 0.813 1.401 4.580 0.560 0.863 2.152 

Region 4 spot 9.228 11.444 17.778 7.827 9.172 12.399 
SE 0.757 1.257 3.759 0.485 0.717 1.615 

Region 5 spot 9.537 11.963 19.122 8.208 9.865 14.266 
SE 0.820 1.393 4.394 0.578 0.915 2.428 

Region 6 spot 9.106 11.243 17.356 7.839 9.306 13.023 
SE 0.729 1.213 3.633 0.520 0.797 1.957 

Region 7 spot 9.025 10.778 15.099 7.741 8.950 11.686 
SE 0.626 0.943 2.219 0.445 0.631 1.298 

Futures 8.847 11.229 18.663 7.753 9.029 11.994 
SE 0.792 1.397 4.846 0.465 0.672 1.441 

 Expected Shortfalls 
Region 1 spot 13.462 16.575 26.029 10.118 11.602 15.213 

SE 1.044 1.807 5.981 0.533 0.795 1.830 
Region 2 spot 12.918 15.629 23.365 9.893 11.296 14.635 

SE 0.926 1.537 4.587 0.507 0.745 1.661 
Region 3 spot 13.481 16.596 25.985 10.503 12.231 16.648 

SE -1.046 1.803 5.895 0.611 0.941 2.347 
Region 4 spot 12.883 15.579 23.284 9.805 11.189 14.508 

SE 0.920 1.530 4.574 0.499 0.737 1.661 
Region 5 spot 13.634 16.685 25.690 10.805 12.679 17.658 

SE 1.032 1.752 5.526 0.654 1.035 2.746 
Region 6 spot 12.632 15.235 22.681 10.069 11.655 15.673 

SE 0.888 1.477 4.426 0.562 0.861 2.116 
Region 7 spot 11.645 13.493 18.052 9.460 10.643 13.317 

SE 0.661 0.994 2.341 0.435 0.617 1.269 
Futures 13.052 16.237 26.176 9.595 10.872 13.836 

SE 1.059 1.867 6.478 0.465 0.672 1.441 

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period 
January 1979 through December 2006. α  indicates the confidence level and SE indicates the standard error 
of the risk measure in the box above. Standard errors are based on 5000 semi-parametric bootstrap resamples. 



Table 6a: Standardised 90% Confidence Intervals for Values-at-Risk and Expected Shortfalls: Corn Spot and Futures Contracts 
 

 Long positions Short positions 
 α =0.99 α =0.995 α =0.999 α =0.99 α =0.995 α =0.999 

contract LB UB LB UB LB UB LB UB LB UB LB UB 
 Values-at-Risk 

region 1 spot 0.893 1.117 0.871 1.148 0.800 1.255 0.890 1.121 0.864 1.159 0.780 1.293 
region 2 spot 0.886 1.125 0.861 1.161 0.781 1.288 0.899 1.115 0.864 1.166 0.748 1.366 
region 3 spot 0.884 1.128 0.858 1.165 0.774 1.299 0.883 1.132 0.850 1.180 0.743 1.363 
region 4 spot 0.880 1.133 0.851 1.175 0.758 1.329 0.882 1.132 0.851 1.176 0.754 1.340 
region 5 spot 0.898 1.110 0.877 1.139 0.812 1.236 0.893 1.117 0.870 1.150 0.794 1.267 
region 6 spot 0.883 1.130 0.854 1.172 0.761 1.326 0.891 1.121 0.864 1.158 0.780 1.293 
region 7 spot 0.897 1.112 0.877 1.140 0.812 1.236 0.887 1.126 0.858 1.168 0.762 1.327 

futures 0.886 1.127 0.856 1.170 0.760 1.330 0.895 1.114 0.873 1.145 0.804 1.250 
 Expected Shortfalls 

region 1 spot 0.913 1.094 0.892 1.123 0.825 1.223 0.908 1.102 0.882 1.137 0.802 1.264 
region 2 spot 0.907 1.103 0.882 1.136 0.805 1.256 0.904 1.109 0.870 1.159 0.756 1.355 
region 3 spot 0.904 1.106 0.879 1.141 0.799 1.267 0.897 1.116 0.865 1.162 0.760 1.338 
region 4 spot 0.899 1.112 0.871 1.152 0.781 1.298 0.899 1.113 0.869 1.155 0.774 1.311 
region 5 spot 0.918 1.089 0.898 1.115 0.837 1.205 0.912 1.096 0.889 1.127 0.818 1.236 
region 6 spot 0.901 1.110 0.873 1.150 0.783 1.296 0.908 1.101 0.883 1.137 0.802 1.265 
region 7 spot 0.917 1.089 0.898 1.116 0.837 1.204 0.903 1.108 0.874 1.149 0.782 1.300 

futures 0.902 1.110 0.873 1.151 0.780 1.303 0.915 1.093 0.894 1.121 0.828 1.219 

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period January 1979 through December 2006, and based on 
5000 semi-parametric bootstrap resamples. α  indicates the confidence level, and LB and UB refer to the lower and upper bounds of the 90% confidence 
interval divided by the estimated mean of the risk measure concerned.  
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Table 6b: Standardised 90% Confidence Intervals for Values-at-Risk and Expected Shortfalls: Soybean Spot and Futures Contracts 
 

 Long positions Short positions 
 α =0.99 α =0.995 α =0.999 α =0.99 α =0.995 α =0.999 

contract LB UB LB UB LB UB LB UB LB UB LB UB 
 Values-at-Risk 

region 1 spot 0.867 1.152 0.828 1.211 0.701 1.443 0.899 1.110 0.877 1.141 0.806 1.248 
region 2 spot 0.872 1.144 0.838 1.195 0.727 1.388 0.901 1.108 0.880 1.137 0.814 1.236 
region 3 spot 0.866 1.153 0.827 1.211 0.702 1.439 0.891 1.120 0.866 1.156 0.783 1.287 
region 4 spot 0.873 1.143 0.839 1.194 0.728 1.388 0.902 1.106 0.881 1.136 0.814 1.237 
region 5 spot 0.867 1.151 0.830 1.206 0.711 1.421 0.890 1.122 0.862 1.163 0.770 1.312 
region 6 spot 0.876 1.140 0.842 1.191 0.731 1.384 0.896 1.114 0.871 1.150 0.791 1.275 
region 7 spot 0.891 1.120 0.867 1.152 0.793 1.268 0.909 1.098 0.891 1.122 0.836 1.200 

futures 0.863 1.158 0.821 1.221 0.686 1.472 0.905 1.103 0.886 1.129 0.825 1.217 
 Expected Shortfalls 

region 1 spot 0.881 1.136 0.842 1.193 0.716 1.420 0.917 1.090 0.896 1.119 0.829 1.219 
region 2 spot 0.889 1.125 0.856 1.174 0.747 1.360 0.919 1.088 0.899 1.114 0.837 1.206 
region 3 spot 0.881 1.136 0.843 1.193 0.719 1.415 0.909 1.100 0.884 1.135 0.805 1.258 
region 4 spot 0.890 1.125 0.856 1.173 0.747 1.360 0.920 1.087 0.899 1.114 0.836 1.208 
region 5 spot 0.884 1.132 0.847 1.186 0.729 1.394 0.906 1.105 0.878 1.143 0.790 1.285 
region 6 spot 0.891 1.123 0.858 1.171 0.749 1.358 0.913 1.096 0.889 1.129 0.813 1.247 
region 7 spot 0.911 1.097 0.888 1.128 0.817 1.236 0.927 1.078 0.910 1.100 0.859 1.172 

futures 0.876 1.143 0.835 1.204 0.701 1.450 0.923 1.083 0.905 1.107 0.848 1.188 

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period January 1979 through December 2006, and based on 
5000 semi-parametric bootstrap resamples. α  indicates the confidence level, and LB and UB refer to the lower and upper bounds of the 90% confidence 
interval divided by the estimated mean of the risk measure concerned.  

 



 
Table 7: Spectral Risk Measure Estimates and % Errors 

 
Spectral Risk Measure (SRM) Estimates 

Numerical 
Integration 

Method 

N =1000 N =10,000 N =100,000 N =1m N =10m N =20m 

Trapezoidal rule 8.926 10.451 10.693 10.728 10.733 10.733 
Simpson’s rule 8.894 10.448 10.693 10.728 10.733 10.733 

Niederreiter QMC 9.154 10.340 10.668 10.725 10.733 10.733 
Weyl QMC 9.154 10.340 10.668 10.725 10.733 10.733 

% errors in SRM estimates 
Trapezoidal rule N =1000 N =10,000 N =100,000 N =1m N =10m  
Simpson’s rule -16.835 -2.628 -0.372 -0.048 -0.003 NA 

Niederreiter QMC -17.131 -2.658 -0.376 -0.048 -0.003 NA 
Weyl QMC -14.712 -3.666 -0.610 -0.075 -0.005 NA 

Trapezoidal rule -14.712 -3.666 -0.610 -0.075 -0.005 NA 

Notes: Based on the mean parameters from Table 1 (i.e., β =1.98, ξ =0.1042, threshold = 3.3701 and 

uN =173.7813) and R  (coefficient of absolute risk aversion) =100, where N  is the number of slices in the 
numerical integration. Errors are assessed against a ‘true’ value obtained using N =20m. Calculations carried 
out using the CompEcon software of Miranda and Fackler (2002) written in MATLAB using the trapezoidal 
rule. 

 

 

 



 
 
 
 

Table 8a: Spectral Risk Measures and Associated Precision Statistics for Corn Spot and Futures  
 Long Position Short position 
 R =20 R =100 R  =200 R =20 R =100     R =200 
 UB LB UB LB UB UB LB UB LB UB LB UB 

Region 1  7.344 11.635 13.558 6.691 10.655 12.542 
SE 0.435 1.423 2.289 0.398 1.330 2.166 
CI 0.903 1.097 0.808 1.205 0.737 1.288 0.903 1.097 0.806 1.210 0.733 1.297 

Region 2  7.494 12.163 14.346 5.847 8.910 10.574 
SE 0.454 1.520 2.474 0.338 1.151 1.918 
CI 0.901 1.099 0.805 1.209 0.733 1.296 0.906 1.095 0.800 1.218 0.724 1.317 

Region 3  7.172 11.762 13.935 6.617 10.809 12.987 
SE 0.438 1.482 2.422 0.406 1.412 2.356 
CI 0.900 1.101 0.804 1.212 0.732 1.299 0.901 1.102 0.797 1.221 0.722 1.314 

Region 4  7.516 12.470 14.906 6.990 11.510 13.777 
SE 0.465 1.600 2.642 0.430 1.484 2.459 
CI 0.900 1.102 0.800 1.216 0.729 1.306 0.900 1.102 0.799 1.217 0.727 1.308 

Region 5  7.153 11.095 12.822 6.954 10.967 12.807 
SE 0.416 1.339 2.138 0.410 1.348 2.176 
CI 0.904 1.094 0.811 1.201 0.739 1.285 0.903 1.096 0.808 1.206 0.736 1.290 

Region 6  7.293 11.940 14.230 6.803 10.800 12.707 
SE 0.446 1.526 2.515 0.404 1.347 2.195 
CI 0.901 1.101 0.801 1.216 0.729 1.305 0.903 1.097 0.806 1.210 0.733 1.297 

Region 7  7.227 11.281 13.049 6.842 10.992 13.061 
SE 0.422 1.363 2.176 0.412 1.400 2.307 
CI 0.904 1.095 0.811 1.201 0.739 1.285 0.902 1.099 0.802 1.215 0.730 1.305 

Futures 6.248 10.091 12.011 6.593 10.346 12.022 
SE 0.378 1.289 2.128 0.387 1.260 2.023 
CI 0.901 1.100 0.801 1.216 0.729 1.306 0.903 1.096 0.809 1.203 0.737 1.287 

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period January 1979 through December 2006, and based on 5000 
semi-parametric bootstrap resamples. R   is the coefficient of absolute risk aversion, SE indicates the standard error, CI indicates the standardised 90% confidence 
interval, and LB and UB refer to its bounds. Calculations carried out using the CompEcon software of Miranda and Fackler (2002) written in MATLAB using the 
trapezoidal rule and N=1m ‘slices’. 
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Table 8b: Spectral Risk Measures and Associated Precision Statistics for Soybean Spot and Futures  
 Long Position Short position 
 R =20 R =100 R  =200 R =20 R =100     R =200 
 UB LB UB LB UB UB LB UB LB UB LB UB 

Region 1  6.928 12.072 14.935 6.019 9.256 10.713 
SE 0.458 1.691 2.904 0.347 1.122 1.797 
CI 0.896 1.109 0.785 1.238 0.706 1.339 0.905 1.094 0.810 1.202 0.738 1.287 

Region 2  6.796 11.615 14.147 5.916 9.059 10.446 
SE 0.436 1.556 2.622 0.340 1.090 1.740 
CI 0.898 1.106 0.792 1.227 0.717 1.324 0.905 1.093 0.811 1.200 0.740 1.284 

Region 3  6.889 12.079 14.947 6.029 9.556 11.224 
SE 0.458 1.689 2.897 0.358 1.188 1.931 
CI 0.895 1.109 0.785 1.238 0.706 1.337 0.903 1.097 0.806 1.208 0.734 1.295 

Region 4  6.802 11.588 14.106 5.914 8.988 10.353 
SE 0.435 1.551 2.614 0.338 1.081 1.724 
CI 0.898 1.106 0.792 1.227 0.717 1.324 0.906 1.093 0.811 1.200 0.740 1.284 

Region 5  7.010 12.224 15.049 6.182 9.823 11.610 
SE 0.461 1.682 2.868 0.368 1.238 2.029 
CI 0.896 1.109 0.787 1.233 0.711 1.334 0.903 1.098 0.803 1.213 0.732 1.301 

Region 6  6.771 11.384 13.814 5.912 9.190 10.726 
SE 0.428 1.516 2.550 0.345 1.131 1.829 
CI 0.899 1.105 0.793 1.226 0.718 1.322 0.904 1.095 0.808 1.207 0.735 1.291 

Region 7  6.632 10.588 12.394 5.869 8.715 9.906 
SE 0.395 1.305 2.110 0.329 1.026 1.615 
CI 0.902 1.098 0.807 1.207 0.735 1.290 0.907 1.090 0.815 1.196 0.745 1.278 

Futures 6.579 11.677 14.586 5.851 8.813 10.087 
SE 0.447 1.682 2.919 0.332 1.048 1.661 
CI 0.893 1.113 0.781 1.245 0.700 1.346 0.907 1.091 0.813 1.198 0.742 1.281 

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period January 1979 through December 2006, and based on 5000 
semi-parametric bootstrap resamples. R   is the coefficient of absolute risk aversion, SE indicates the standard error, CI indicates the standardised 90% confidence 
interval, and LB and UB refer to its bounds. Calculations carried out using the CompEcon software of Miranda and Fackler (2002) written in MATLAB written in 
MATLAB using the trapezoidal and N=1m ‘slices’. 
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